История и перспективы развития большепролетных конструкций
Большепролетные конструкции играют значительную роль в мировой архитектуре. И заложено это ещё в давние времена, когда собственно и появилось это особое направление архитектурного проектирования.
Идея и реализация большепролетных проектов неразрывно связана с основным стремлением не только строителя и архитектора, но и всего человечества в целом — стремлением покорения пространства. Именно поэтому, начиная со 125 года н. э., когда появилось первое известное в истории большепролетное строение, Пантеон Рима (диаметр основания — 43 м), и заканчивая творениями современных архитекторов, большепролетные конструкции пользуются особой популярностью.
История большепролетных конструкций
Как уже говорилось выше — первым был Пантеон в Риме построенный в 125 году н. э. Позднее появились и другие величественные строения с большепролетными купольными элементами. Ярким примером можно считать храм Святой Софии построенный в Константинополе в 537 году н. э. Диаметр купола составляет 32 метра, а сам он придаёт всему сооружению не только величественность, но и удивительную красоту, которой и по сей день восхищаются и туристы, и архитекторы.
В те и более поздние времена из камня невозможно было построить легкие сооружения. Поэтому купольные строения характеризовались большой массивностью а их строительство требовало серьёзных временных затрат — до ста и более лет.
Позже, для обустройства перекрытий больших пролетов начали использоваться и деревянные конструкции. Здесь яркий примером является достижение отечественной архитектуры — бывший Манеж в Москве был построен в 1812 году и имел в своей конструкции деревянные пролеты длиной 30 м.
XVIII-XIX столетия характеризуются развитием черной металлургии, что дало новые и более прочные материалы для строительства — сталь и чугун. Это ознаменовало появление во второй половине 19-го столетия большепролетных стальных конструкций, получивших большое применение в российской и мировой архитектуре.
Следующим строительным материалом, существенно расширившим возможности архитекторов, стали железобетонные конструкции. Благодаря появлению и совершенствованию ЖБК мировая архитектура 20-го столетия пополнилась тонкостенными пространственными конструкциями. Параллельно, во второй половине ХХ столетия, стали широко использоваться висячие покрытия, стержневые и пневматические системы.
Во второй половине ХХ столетия появилась и клееная древесина. Развитие этой технологии позволило «вернуть к жизни» деревянные большепролетные конструкции, достичь особых показателей легкости и невесомости, завоевать пространство, не идя при этом на компромисс с прочностью и надежностью.
Большепролетные конструкции в современном мире

Но что же представляют собой большепролетные конструкции? Здесь мнения экспертов расходятся. Единого определения нет. По одной из версий — это любая конструкция с длиной пролета более 36 м. По другой — конструкции с безопорным покрытием длиной более 60 м, хотя они уже относятся к категории уникальных. К последним относятся и строения с длиной пролета больше ста метров.
Но в любом случае, независимо от определения, современная архитектура однозначна в том, что большепролетные строения являются сложными объектами. А это означает и высокий уровень ответственности архитектора, необходимость в принятии дополнительных мер безопасности на каждом из этапов — архитектурное проектирование, строительство, эксплуатация.
Важным моментом является выбор строительного материала — дерева, ЖБК или стали. Помимо этих традиционных материалов используются и специальные ткани, тросы и углепластик. Выбор материала зависит от задач стоящих перед архитектором и специфики строительства. Рассмотрим основные материалы используемые в современном большепролетном строительстве.
Перспективы большепролетного строительства
Учитывая историю мировой архитектуры и неизбежное стремление человека к завоеванию пространства и созданию совершенных архитектурных форм, можно смело прогнозировать устойчивый рост внимания к большепролетным конструкциям. Что касается материалов, то помимо современных высокотехнологичных решений, всё большее внимание будет уделяться КДК, представляющим собой уникальный синтез традиционного материала и современных высоких технологий.
Что же касается России, то, учитывая темпы развития экономики и не удовлетворенную потребность в объектах различного назначения, в т. ч. торговой и спортивной инфраструктуры, объёмы строительства большепролетных здания и сооружений будут постоянно увеличиваться. И здесь всё большую роль будут играть уникальные конструкторские решения, качество материалов и использование инновационных технологий.
Но не забудем и об экономической составляющей. Именно она стоит и будет стоять во главе угла, и именно сквозь неё будет рассматриваться эффективность того или иного материала, технологии и конструкторского решения. И в этой связи опять хочется вспомнить про клееные деревянные конструкции. Им, по мнению многих экспертов, принадлежит будущее большепролетного строительства.
ЛЕКЦИЯ 6. КОНСТРУКЦИИ БОЛЬШЕПРОЛЕТНЫХ ЗДАНИЙ С ПРОСТРАНСТВЕННЫМИ ПОКРЫТИЯМИ
ЛЕКЦИЯ 6. КОНСТРУКЦИИ БОЛЬШЕПРОЛЕТНЫХ ЗДАНИЙ С ПРОСТРАНСТВЕННЫМИ ПОКРЫТИЯМИ
В зависимости от конструктивной схемы и статической работы несущие конструкции покрытий можно разделить на плоскостные (работающие в одной плоскости) и пространственные.
Плоскостные конструкции
К этой группе несущих конструкций относятся балки, фермы, рамы и арки. Они могут выполняться из сборного и монолитного железобетона, а также металлическими или деревянными.
Балки и фермы совместно с колоннами образуют систему поперечных рам, продольная связь между которыми осуществляется плитами покрытия и ветровыми связями.
Наряду со сборными рамами в ряде зданий уникального характера при повышенных нагрузках и больших пролетах применяют монолитные железобетонные или металлические рамы (рис. 48).
Рис. 48. Большепролетные конструкции:
а — рама железобетонная монолитная двухшарнирная.
Для перекрытия пролетов свыше 40 метров целесообразно использовать арочные конструкции. Арки конструктивно можно разделить на двухшарнирные (имеющие шарниры на опорах), трехшарнирные (с шарнирами на опорах и в середине пролета) и бесшарнирные.
Арка работает в основном на сжатие и передает на опоры не только вертикальную нагрузку, но и горизонтальное давление (распор).
По сравнению с балками, фермами и рамами арки имеют меньший вес и экономичнее по расходу материалов. Арки применяются в конструкциях в сочетании со сводами и оболочками.
ЛЕКЦИЯ 7. КОНСТРУКТИВНЫЕ СИСТЕМЫ И КОНСТРУКТИВНЫЕ ЭЛЕМЕНТЫ ПРОИЗВОДСТВЕННЫХ ЗДАНИЙ
Каркасы промышленных зданий
Стальной каркас одноэтажных зданий
Стальной каркас одноэтажных зданий состоит из тех же элементов, что и железобетонный (рис. )
Рис. Стальной каркас здания
В стальных колоннах различают две основные части: стержень (ветвь) и базу (башмак) (рис.73) .
Рис. 73. Стальные колонны.
а – постоянного сечения с консолью; б – раздельного типа.
1 – подкрановая часть колонны; 2 – надколонник, 3 – добавочная высота надколонника; 4 – шатровая ветвь; 5 – подкрановая ветвь; 6 – башмак; 7 – подкрановая балка; 8 – подкрановый рельс; 9 – ферма покрытия.
Башмаки служат для передачи нагрузки от колонны на фундамент. Башмаки и нижние части колонн, соприкасающиеся с землей, во избежание коррозии обетонивают. Для опирания стен между фундаментами крайних колонн устанавливают сборные железобетонные фундаментные балки.
Стальные подкрановые балки бывают сплошные и решетчатые. Наибольшее применение получили сплошные подкрановые балки, имеющие двутавровое сечение: несимметричное, применяемые при шаге колонн 6 метров, или симметричное при шаге 12 метров.
Основными несущими конструкциями покрытий в зданиях со стальным каркасом являются стропильные фермы (рис. 74).
Рис. 74. Стальные фермы:
а – с параллельными поясами; б – то же; в – треугольная; г – полигональная;
д – конструкция полигональной фермы.
По очертанию они могут быть с параллельными поясами, треугольные, полигональные.
Фермы с параллельными поясами применяют в зданиях с плоскими крышами, а также в качестве подстропильных.
Треугольные фермы применяют в зданиях с кровлями, требующими больших уклонов, например из асбоцементных листов.
Жесткость стального каркаса и восприятие им ветровых нагрузок и инерционных воздействий от кранов обеспечивается устройством связей. Между колоннами в продольных рядах ставят вертикальные связи – крестовые или портальные. Горизонтальные поперечные связи ставят в плоскостях верхнего и нижнего поясов, а вертикальные – по осям опорных стоек и в одной или нескольких плоскостях посередине пролета.
Деформационные швы
В каркасных зданиях деформационные швы расчленяют на отдельные участки каркас здания и все опирающиеся на него конструкции. Различают швы поперечные и продольные.
Поперечные температурные швы устраивают на спаренных колоннах, поддерживающих конструкции смежных, разрезанных швом, участков здания. Если шов является одновременно осадочным, то он устраивается и в фундаментах спаренных колонн.
В одноэтажных зданиях ось поперечного деформационного шва совмещают с поперечной разбивочной осью ряда. Так же решают деформационные швы в перекрытиях многоэтажных зданий.
Продольные температурные швы в зданиях с железобетонным каркасом решают на двух продольных рядах колонн, а в зданиях со стальным каркасом – на одном ряде колонн.
Стены промышленных зданий
В зданиях бескаркасных и с неполным каркасом наружные стены являются несущими и выполняются из кирпича, крупных блоков или других камней. В зданиях с полным каркасом стены выполняют из тех же материалов самонесущими по фундаментным балкам или панельными – самонесущими или навесными. Наружные стены располагают с внешней стороны колонн, внутренние стены зданий опирают на фундаментные балки или на ленточные фундаменты.
В каркасных зданиях при значительной протяженности и высоте стен для обеспечения устойчивости между элементами основного каркаса вводят дополнительные стойки, иногда ригели, образующие вспомогательный каркас, называемый фахверком.
При наружном водостоке с покрытий продольные стены промышленных зданий выполняют с карнизами, а торцовые – с парапетными стенками. При внутреннем водоотводе парапеты возводят по всему периметру здания.
Стены из крупных панелей
Железобетонные ребристые панели предназначаются для неотапливаемых зданий и зданий с большими производственными тепловыделениями. Толщина стенки 30 миллиметров.
Панели для отапливаемых зданий применяют железобетонные утепленные или из легких ячеистых бетонов. Железобетонные утепленные панели имеют толщину 280 и 300 миллиметров.
Панели разделяются на рядовые (для глухих стен), панели-перемычки (для установки сверху и снизу оконных проемов) и парапетные.
На рис. 79 показан фрагмент стены каркасного панельного здания с ленточным остеклением.
Рис. 79. Фрагмент стены из крупных панелей
Заполнение оконных проемов панельных зданий производится преимущественно в виде ленточного остекления. Высота проемов принимается кратной 1,2 метров, ширина – равной шагу пристенных колонн.
При отдельных оконных проемах меньшей ширины применяются простеночные панели с размерами 0,75, 1,5, 3,0 метра в соответствии с размерами стандартных переплетов.
Окна, двери, ворота, фонари
Фонари
Для обеспечения освещения удаленных от окон рабочих мест и для аэрации (вентиляции) помещений в промышленных зданиях устраивают фонари.
Фонари бывают световые, аэрационные и смешанного типа:
— световые с глухими остекленными переплетами, служащие только для освещения помещений;
— светоаэрационные с открывающимися остекленными створками, служащие для освещения и проветривания помещений;
— аэрационные без остекления, применяемые только для целей аэрации.
Фонари могут быть различного профиля с вертикальным, наклонным или горизонтальным остеклением.
По профилю фонари бывают прямоугольные с вертикальным остеклением, трапециедальные и треугольные с наклонным остеклением, зубчатые с односторонним вертикальным остеклением. В промышленном строительстве обычно применяют прямоугольные фонари. (рис. 83).
Рис. 83. Основные схемы световых и светоаэрационных фонарей:
а – прямоугольный; б – трапециевидный; в – зубчатый; г – треугольный.
По расположению относительно оси здания различают фонари продольные и поперечные. Наибольшее распространение получили продольные фонари.
Отвод воды с фонарей бывает наружный и внутренний. Наружный применяют при фонарях шириной 6 метров или при отсутствии в здании внутреннего водоотвода.
Конструкция фонарей является каркасной и состоит из ряда поперечных рам, опирающихся на верхние пояса ферм или балок покрытия, и системы продольных связей. Конструктивные схемы фонарей и их параметры унифицированы. Для пролетов 12, 15, и 18 метров применяют фонари шириной 6 метров, для пролетов 24, 30 и 36 метров – шириной 12 метров. Ограждение фонаря состоит из покрытия, боковых и торцовых стенок.
Фонарные переплеты изготавливают стальными длиной 6000 миллиметров и высотой 1250, 1500 и 1750 миллиметров. Переплеты остекляют армированным или оконным стеклом.
Аэрацией называют естественный, управляемый и регулируемый воздухообмен.
Действие аэрации основывается:
— на тепловом подпоре, возникающем вследствие разности температур внутреннего и наружного воздуха;
— на высотном перепаде (разности центров вытяжных и приточных отверстий);
— на действии ветра, который обдувая здание, создает на подветренной стороне разрежение воздуха (рис. 84).
Рис. 84. Схемы аэрации зданий:
а – действие аэрации при отсутствии ветра; б – то же, при действии ветра.
Недостатком светоаэрационных фонарей является необходимость закрывать переплеты с наветренной стороны, так как может происходить задувание ветром загрязненного воздуха обратно в рабочую зону.
Двери и ворота
Двери промышленных зданий по конструкции не отличаются от щитовых дверей гражданских зданий.
Ворота предназначаются для ввода внутрь здания транспортных средств и пропуска больших масс людей.
Размеры ворот определяются в соответствии с размерами перевозимого оборудования. Они должны превышать габариты подвижного состава в груженом состоянии по ширине на 0,5-1,0 метра, а по высоте – на 0,2 – 0,5 метра.
По способу открывания ворота бывают распашные, раздвижные, подъемные, шторные и т.д.
Распашные ворота состоят из двух полотнищ, навешенных посредством петель в воротной раме (рис. 81). Рама может быть деревянной, стальной или железобетонной.
Рис. 81. Распашные ворота:
1 – стойки железобетонной рамы, обрамляющей проем; 2 – ригель.
При отсутствии места для распахивания полотен ворота делают раздвижными. Раздвижные ворота бывают однопольные и двупольные. Полотна их имеют конструкция подобную распашным, но в верхней части снабжены стальными роликами, которые при открывании и закрывании ворот передвигаются по рельсу, прикрепленную к ригелю железобетонной рамы.
Полотна подъемных ворот – цельнометаллические, подвешены на тросах и двигаются по вертикальным направляющим.
Полотнище шторных ворот состоит из горизонтальных элементов, образующих стальную штору, которая при подъеме навертывается на вращающийся барабан, горизонтально расположенный над верхом проема.
Покрытия
В одноэтажных промышленных зданиях покрытия выполняются бесчердачными, состоящими из основных несущих элементов покрытия и ограждения.
В неотапливаемых зданиях и зданиях с избыточными производственными тепловыделениями ограждающие конструкции покрытий выполняются неутепленными, в отапливаемых зданиях – утепленными.
Конструкция холодного покрытия состоит из основания (настила) и кровли. В утепленное покрытие включают пароизоляцию и утеплитель.
Элементы настила подразделяют на мелкоразмерные (длиной 1,5 – 3,0 метра) и крупноразмерные (длиной 6 и 12 метров).
В ограждениях из мелкоразмерных элементов возникает необходимость применения прогонов, которые располагают вдоль здания по балкам или фермам покрытия.
Крупноразмерные настилы укладывают по основным несущим элементам и покрытия в этом случае называют беспрогонными.
Настилы
Беспрогонные железобетонные настилы выполняются из железобетонных предварительно напряженных ребристых плит шириной 1,5 и 3,0 метра и длиной, равной шагу балок или ферм.
В неутепленных покрытиях по верху плит устраивается цементная стяжка, по которой наклеивают рулонную кровлю.
В утепленных покрытиях в качестве утеплителя применяются малотеплопроводные материалы и устраивается дополнительная пароизоляция. Пароизоляция особенно необходима в покрытиях над помещениями с повышенной влажностью воздуха.
Мелкоразмерные плиты могут быть железобетонными, армоцементными или из армированных легких и ячеистых бетонов.
Рулонные кровли выполняются рубероидными. По верхнему слою рулонных кровель устраивается защитный слой гравия, втопленный в битумную мастику.
Также применяются настилы из листовых материалов.
Одним из таких настилов является стальной оцинкованный профилированный настил, укладываемый на прогонах (при шаге ферм 6 метров) или по решетчатым прогонам (при шаге 12 метров).
Скатные холодные покрытия часто выполняются из асбоцементных волнистых листов усиленного профиля толщиной 8 миллиметров.
Кроме того, применяются листы из волнистого стеклопластика и других синтетических материалов.
Водоотвод с покрытий
Водоотвод продлевает срок эксплуатации здания, предохраняя его от преждевременного старения и разрушения.
Водоотвод с покрытий промышленных зданий может быть наружным и внутренним.
В одноэтажных зданиях наружный водоотвод устраивают неорганизованным, а в многоэтажных – с применением водосточных труб.
Система внутреннего водоотвода состоит из водоприемных воронок и сети расположенных внутри здания труб, отводящих воду в ливневую канализацию (рис. 82).
Рис. 82. Внутренний водоотвод:
а – водоприемная воронка; б – чугунный поддон;
1 – корпус воронки; 2 – крышка; 3 – патрубок; 4 – воротник патрубка; 5 – чугунный поддон; 6 – отверстие для патрубка; 7 – мешковина, пропитанная битумом; 8 – рулонная кровля; 9 – заполнение расплавленным битумом; 10 – железобетонная плита покрытия.
Внутренний водоотвод устраивают:
— в многопролетных зданиях с многоскатными крышами;
— в зданиях, имеющих большую высоту или значительные перепады высот отдельных пролетов;
в зданиях с большими производственными тепловыделениями, вызывающими подтаивание снега на покрытии.
Полы
Полы в промышленных зданиях выбирают с учетом характера производственных воздействий на них и предъявляемых к ним эксплуатационных требований.
Такими требованиями могут быть: жаростойкость, химическая стойкость, водо- и газонепроницаемость, диэлектричность, неискримость при ударах, повышенная механическая прочность и другие.
Подобрать полы, удовлетворяющие всем необходимым требованиям, иногда бывает невозможно. В таких случаях в пределах одного помещения приходится применять полы различного типа.
Конструкция пола состоит из покрытия (одежды) и подстилающего слоя (подготовки). Кроме того, в конструкцию пола могут входить прослойки различного назначения. Подстилающий слой воспринимает через покрытие передаваемую на полы нагрузку и распределяет ее на основание.
Подстилающие слои бывают жесткие (бетонные, железобетонные, асфальтобетонные) и нежесткие (песчаные, гравийные, щебеночные).
При устройстве полов по междуэтажным перекрытиям основанием служат плиты перекрытий, а подстилающий слой или отсутствует вовсе, или его роль выполняют тепло- и звукоизоляционные слои.
Грунтовые полы применяют в складах и горячих цехах, где они могут подвергаться ударам от падения тяжелых предметов или соприкасаться с раскаленными деталями.
Каменные полы применяют в складах, где возможны значительные ударные нагрузки, или в зонах действия транспорта на гусеничном ходу. Полы эти прочные, но холодные и жесткие. Покрытием таких полов служат обычно брусчатка (рис. 85).
Рис. 85. Каменные полы:
а – булыжные; б – из крупной брусчатки; в – из мелкой брусчатки;
1 – булыжный камень; 2 – песок; 3 – брусчатка; 4 – битумная мастика; 5 – бетон.
Бетонные и цементные полы применяют в помещениях, где пол может подвергаться постоянному увлажнению или действию минеральных масел (рис. 86).
Рис. 86. Бетонные и цементные полы:
1 – бетонная или цементная одежда; 2 – бетонный подстилающий слой.
Асфальтовые и асфальтобетонные полы обладают достаточной прочностью, водостойкостью, водонепроницаемостью, эластичностью, легко ремонтируются (рис. 87). К недостатками асфальтовых полов относят их способность размягчаться при повышении температуры, вследствие чего их не устраивают в горячих цехах. Под действием длительных сосредоточенных нагрузок в них образуются вмятины.
Рис. 87. Асфальтовые и асфальтобетонные полы:
1 – асфальтовая или асфальтобетонная одежда; 2 – бетонный подстилающий слой.
К керамическим полам относятся клинкерные, кирпичные и плиточные полы (рис. 88). Такие полы хорошо сопротивляются действию высокой температуры, стойки против кислот, щелочей и минеральных масел. Их применяют в помещениях, требующих большой чистоты, при отсутствии ударных нагрузок.
Рис. 88. Полы из керамических плиток:
1 – керамическая плитка; 2 – цементный раствор; 3 – бетон.
Металлические полы применяют лишь на отдельных участках, где к полам прикасаются раскаленные предметы и в то же время нужна ровная твердая поверхность и в цехах при сильных ударных нагрузках (рис. 89).
Рис. 89. Металлические полы:
1 – чугунные плитки; 2 – песок; 3 – грунтовое основание.
Так же в промышленных зданиях могут применяться полы дощатые и из синтетических материалов. Применяются такие полы в лабораториях, инженерных корпусах, административных помещениях.
В полах с жестким подстилающим слоем во избежание появления трещин устраивают деформационные швы. Их располагают по линиям деформационных швов здания и в местах сопряжения полов разного типа.
Для прокладки инженерных коммуникаций в полах устраивают каналы.
Примыкание полов к стенам, колоннам и фундаментам станков делают с зазорами для свободной осадки.
В мокрых помещениях для стока жидкостей полам придают рельеф с уклонами по направлению к чугунным или бетонным водоприемникам, которые называются трапами. Трапы соединяют с канализацией. Вдоль стен и колонн необходимо устройство плинтусов и галтелей.
Лестницы
Лестницы промышленных зданий подразделяются на следующие виды:
— основные, применяемые в многоэтажных зданиях для постоянного сообщения между этажами и для эвакуации;
— служебные, ведущие на рабочие площадки и антресоли;
— пожарные наружные, обязательные при высоте здания более 10 метров и предназначенные для подъема на крышу бойцов пожарных команд (рис. 90).
Рис. 90. Пожарная лестница
— аварийные наружные, устраиваемые для эвакуации людей при недостаточном количестве основных лестниц (рис. 91);
Рис. 91. Аварийная лестница
Противопожарные преграды
Классификация зданий и помещений по взрывопожарной и пожарной опасности применяется для установления требования пожарной безопасности, направленных на предотвращение возможности возникновения пожара и обеспечения противопожарной защиты людей и имущества в случае возникновения пожара. По взрывопожарной и пожарной опасности помещения подразделяются на категории А, Б, В1-В4, Г и Д, а здания на категории А, Б, В, Г и Д.
Категории помещений и зданий определяются, исходя из вида находящихся в помещениях горючих веществ и материалов, их количества и пожароопасных свойств, а также, исходя из объемно-планировочных решений помещений и характеристик проводимых в них технологических процессов.
Противопожарные преграды устраивают с целью предотвратить распространение по зданию огня в случае возникновения пожара. Горизонтальными преградами в многоэтажных зданиях служат несгораемые перекрытия. Вертикальными преградами являются противопожарные стены (брандмауэры).
Брандмауэр предназначается для предотвращения распространения пожара из одного помещения или здания в смежное помещение или здание. Брандмауэры выполняются из несгораемых материалов – камня, бетона или железобетона, и должны иметь предел огнестойкости не менее четырех час. Брандмауэры должны опираться на фундаменты. Брандмауэры делаются на всю высоту здания, разделяя сгораемые и трудносгораемые покрытия, перекрытия, фонари и другие конструкции и должны возвышаться над сгораемыми кровлями не менее чем на 60 сантиметров, а над несгораемыми кровлями на 30 сантиметров. Двери, ворота, окна, крышки люков и другие заполнения проемов в брандмауэрах должны быть несгораемыми с пределом огнестойкости не менее 1,5 часа. Брандмауэры рассчитываются на устойчивость в случае одностороннего обрушения при пожаре перекрытий, покрытий и других конструкций (рис. 92).
Рис. 92. Брандмауэры:
а – в здании с несгораемыми наружными стенами; б – в здании со сгораемыми или трудносгораемыми наружными стенами; 1 – гребень брандмауэра; 2 – торцовый брандмауэр.
1. Назовите конструктивные схемы промышленных зданий.
2. Назовите основные типы каркасов промышленных зданий.
3. Какие существуют виды стен промышленных зданий?
ЛЕКЦИЯ 8. КОНСТРУКТИВНЫЕ СИСТЕМЫ И КОНСТРУКТИВНЫЕ ЭЛЕМЕНТЫ СЕЛЬСКОХОЗЯЙСТВЕННЫХ ЗДАНИЙ И СООРУЖЕНИЙ
Теплицы и парники
Теплицы и парники представляют собой застекленные сооружения, в которых искусственно создаются нужные климатические и почвенные условия, позволяющие выращивать ранние овощи, рассаду и цветы.
Здания теплиц строят преимущественно из сборных железобетонных остекленных панелей, скрепленных между собой сваркой закладных деталей.
Конструкция парника состоит из сборных железобетонных рам, устанавливаемых в грунт по длине парника и сборных железобетонных парубней (продольный лежень парника), укладываемых на консоли рам. Съемные остекленные парниковые рамы выполняются деревянными (рис. 94).
Рис. 94. Парник из сборных железобетонных элементов:
1 – железобетонные рамы; 2 – железобетонный парубень северный; 3 – то же, южный;
4 – песок; 5 – питательный слой грунта; 6 – отопительные трубы в слое песка;
7 – остекленная деревянная рама.
СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ
1. Маклакова Т. Г., Нанасова С. М. Конструкции гражданских зданий: Учебник. – М.: Издательство АСВ, 2010. – 296 с.
2. Будасов Б. В., Георгиевский О. В., Каминский В. П. Строительное черчение. Учеб. для вузов / Под общ. ред. О. В. Георгиевского. – М.: Стройиздат, 2002. – 456 с.
3. Ломакин В.А. Основы строительного дела. – М.: Высшая школа, 1976. – 285 с.
4. Красенский В.Е., Федоровский Л.Е. Гражданские, промышленные и сельскохозяйственные здания. – М.: Стройиздат, 1972, – 367 с.
5. Короев Ю. И Черчение для строителей: Учеб. для проф. Учеб. заведений. – 6-е изд., стер. – М.: Высш. шк., Изд. Центр «Академия», 2000ю – 256 с.
6. Чичерин И. И. Общестроительные работы: учебник для нач. проф. Образования. – 6-е изд., стер. – М.: Издательский центр «Академия», 2008. – 416 с.
ЛЕКЦИЯ 6. КОНСТРУКЦИИ БОЛЬШЕПРОЛЕТНЫХ ЗДАНИЙ С ПРОСТРАНСТВЕННЫМИ ПОКРЫТИЯМИ
В зависимости от конструктивной схемы и статической работы несущие конструкции покрытий можно разделить на плоскостные (работающие в одной плоскости) и пространственные.
Плоскостные конструкции
К этой группе несущих конструкций относятся балки, фермы, рамы и арки. Они могут выполняться из сборного и монолитного железобетона, а также металлическими или деревянными.
Балки и фермы совместно с колоннами образуют систему поперечных рам, продольная связь между которыми осуществляется плитами покрытия и ветровыми связями.
Наряду со сборными рамами в ряде зданий уникального характера при повышенных нагрузках и больших пролетах применяют монолитные железобетонные или металлические рамы (рис. 48).
Рис. 48. Большепролетные конструкции:
а — рама железобетонная монолитная двухшарнирная.
Для перекрытия пролетов свыше 40 метров целесообразно использовать арочные конструкции. Арки конструктивно можно разделить на двухшарнирные (имеющие шарниры на опорах), трехшарнирные (с шарнирами на опорах и в середине пролета) и бесшарнирные.
Арка работает в основном на сжатие и передает на опоры не только вертикальную нагрузку, но и горизонтальное давление (распор).
По сравнению с балками, фермами и рамами арки имеют меньший вес и экономичнее по расходу материалов. Арки применяются в конструкциях в сочетании со сводами и оболочками.
Последнее изменение этой страницы: 2016-06-26; Нарушение авторского права страницы


















