Пластик для строительства какой есть

Стройматериалы из пластика

Придя к осознанию невосполнимости многих ресурсов, люди стали искать им замену. Благо, долго искать не пришлось. У нас под ногами валяется столько всего, что если это не убирать, скоро ходить будем по сплошной помойке. А вот если это выброшенное правильно обработать, то послужит оно ещё не один год Тем более, по-разному комбинируя, мы сможем придать получившимся материалам нужные нам свойства и качества. А так как при их производстве в качестве скрепляющего вещества приходится применять смолы или полимеры, то часто такие композитные материалы называют полимерными строительными материалами.

Различия стройматериалов из пластика

Так как они выпускаются для разных нужд в строительстве, то они значительно отличаются друг от друга. Причём отличие есть не только в составе материала, но и в его внешнем виде.

Так, стройматериалы могут выпускаться в виде крупных плит и штучной плитки, листами или рулонами, плёнкой или погонажными изделиями (поручни, плинтуса и т.п.), трубами или штампованными изделиями. Такой подход к делу позволяет свести при отделке трудовые и материальные затраты к минимуму.

В составе же у них одинаково чаще всего только связующее: эпоксидные или формальдегидные смолы, а в качестве наполнителя могут быть древесина, текстиль, бумага, стекло, уголь и т.д. В любом случае они дают огромный экономический эффект, так как чаще всего наполнитель представляет собой либо вторсырьё, либо отходы.

Виды строительных пластиков

Даже с одним и тем же, но разным по структуре наполнителем, пластики представляют совершенно другой материал, каждый со своими индивидуальными качествами.

Нельзя спутать древесно-слоистые плиты с древесно-стружечными, древесноволокнистые же своими свойствами отличаются и от первых, и от вторых.

Текстолит с основой из хлопчатобумажной ткани сильно отличается от текстолита на лавсановой основе.

Гетинакс, по составу и сути являющийся аналогом декоративных бумажнослоистых плит, вовсе ими не является.

Металлопластик, хотя и считается композитным материалом, не является продуктом смешения смол и металла. Слои в нём соединяются посредством клея.

Плёнки, как и моющиеся обои, обычно имеют наружный слой из поливинилхлорида, и являются рулонными отделочными материалами.

Линкруст, также служащий для отделки, состоит из бумажной основы и покрытия из полимера, является отделочным материалом, который можно красить.

А ведь есть ещё такие строительные пластики: стеклопластик, волокниты, углепластик.

Стеклопластики

Стеклопластик ― композитный материал из полимеров и стекловолокнистого наполнителя. Свойства стеклопластика уникальны:

  1. 1. Он лёгок. Если взять конструкцию из него, по прочности равную стальной, она будет легче стальной в 3,5 раза.
  2. 2. Его можно резать, сверлить
  3. 3. Он прекрасный диэлектрик.
  4. 4. Стеклопластик имеет хорошие теплоизоляционные качества, так как имеет низкую теплопроводность.
  5. 5. Стоимость производства сопоставима со стоимостью стали.

Тот факт, что полимер армируется стекловолокном, придаёт пластмассам несвойственные им характеристики. Они становятся на порядок прочнее, почти не истираются, выдерживают удар и вибрацию. Это материал будущего, недаром его называют «лёгким металлом». Стеклопластик может быть листовым, в виде плит и формовочных отливок. Свойства же стеклопластика регулируются, в основном, расположением стеклонитей в полимере.

Волокниты

Собственно говоря, стеклопластик тоже можно было бы назвать волокнитом, ведь в его состав входит стекловолокно. Волокниты ― это общее название композитных материалов, наполнителем которых являются рубленые волокна. Именно по типу наполнителя и выделяют виды волокнитов:

  • — вискозное и хлопковое волокно ― просто волокниты;
  • — асбестовые волокна ― асбоволокно;
  • — волокна из нитей стекла ― стекловолокниты;
  • — волокна из синтетической нити ― органоволокниты;
  • — волокно из углеродного сырья ― углеродоволокниты.

Эти волокна пропитываются формальдегидными или эпоксидными смолами, либо кремнийорганическими полимерами. Часто волокниты представляют собой гранулы или рыхлую массу из пропитанных смолой волокон. Готовые изделия получают прессованием в формах. В строительстве применяются панели, дверные ручки и т.п. детали, изготовленные из волокнита.

Углепластики

Их основа ― углеродные нити, очень прочные на разрыв. Получают такие нити из природной растительной органики, сначала сутки окисляя её при 250 °C , а потом карбонизируя в азоте (так без доступа кислорода образуется графитная структура) сначала при температуре до полторы тысяч градусов, а затем, чтобы долю графита довести до 99%, до 3000 °C . Для получения пластика нити пропитываются эпоксидной смолой.

Этот процесс производства можно осуществлять тремя способами:

— прессованием, когда выстланная в форму углеткань пропитывается смолой и полимеризуется. Иногда для уборки лишней смолы применяют вакуум, а для быстрейшей полимеризации ― нагревание;

— контактным формованием. В этом случае с детали, которую нужно отлить, снимается слепок (монтажной пеной, алебастром), получившаяся форма выкладывается тканью и пропитывается смолой;

— намоткой. При таком способе нить, ленту или ткань наматывают на заготовку, имеющую цилиндрическую форму, затем валиком или кистью наносят смолу и сушат в печи. Такой слой применяется для производства труб.

Нужно иметь в виду, что при любом способе надо между формой и пластиком создавать разделительный антиадгезивный слой, чтобы заготовка не присыхала к форме. Этот слой может быть из воска, кремнеорганической смазки, мыла и т.п.

Сфер применения углепластика не счесть. В строительстве же его важнейшая функция ― усиление несущих конструкций путём внешнего нанесения. Этот лёгкий материал способен вдвое увеличить несущую способность. То есть углепластик просто необходим при ремонтных и реставрационных работах.

Еще о композиционных материалах :

Источник

Пластики для строительства

В строительстве полимерные материалы используются повсеместно. Листовые пластики обладают целым рядом неоспоримых преимуществ в сравнении с традиционными строительными материалами, такими, к примеру, как стекло. Высокая ударопрочность, долговечность, износостойкость, малый вес, отличные тепло- и звукоизоляционные свойства, устойчивость к воздействиям внешней среды, простота обработки и монтажа, а также прекрасная светопропускающая способность стали причиной постоянно растущего спроса на эти материалы.

Строительные пластики используются для остекления зданий и сооружений, возведения различных перегородок, защитных экранов, изготовления теплиц, заборов, навесов, козырьков, оформления входных групп зданий, декоративной облицовки и многого другого.

В нашем ассортименте вы всегда найдете все основные пластики для строительства от ведущих российских и зарубежных производителей: поликарбонат монолитный, поликарбонат сотовый и оргстекло.

Поликарбонат монолитный

Из всех прозрачных полимерных материалов монолитный (литой) поликарбонат является наиболее долговечным, способным выдерживать огромную ударную нагрузку. Коэффициент светопропукания материала составляет порядка 90%.

Благодаря своим уникальным физическим свойствам и повышенной долговечности, этот вид пластика может применяться практически где угодно.

Поскольку литой поликарбонат крайне сложно повредить, он часто используется для антивандальной защиты в качестве альтернативы пуленепробиваемому стеклу.

Поликарбонат сотовый

Сотовый поликарбонат представляет собой прозрачный полимер, характеризующийся высокой жесткостью и ударопрочностью, а его ячеистая структура обеспечивает великолепные тепло- и звукоизоляционные свойства.

Этот материал успешно применяется в самых различных отраслях, в особенности, для изготовления теплиц, шумопоглощающих экранов, навесов и ограждений, остекления зимних садов и оранжерей.

Сотовый поликарбонат экологичен, легко поддается переработке и с успехом используется во всем мире для изготовления изделий из вторсырья.

Оргстекло (ПММА)

Акриловое стекло — самый распространенный в строительстве заменитель силикатного стекла, применяемый как для остекления зданий и сооружений, так и в качестве декоративного отделочного материала.

Популярность акрила обусловлена с одной стороны, его свойствами, выгодно отличающими материал от обычного стекла, а с другой стороны — многообразием его видов: бесцветное, цветное и сатинированное, матовое и прозрачное, литое и экструзионное, сотовое и для соляриев — богатейший выбор для любых целей и на любой вкус.

Источник

Основные свойства пластмасс как строительного материала

Новизна пластмасс как строительного материала, сложная химическая структура полимеров и чрезвычайная жесткость их работы в некоторых строительных конструкциях требуют всестороннего, глубокого и научно объективного изучения проблемы поведения пластических масс во времени и их долговечности.

Ценным свойством пластических масс является их малый объемный вес. Объемный вес различных широко применяемых пластиков, в том числе пористых поропластов, колеблется от 1 до 2200 кг/м3. Специальные пластики, например рентгенонепроницаемые с сернокислым барием в качестве наполнителя, могут иметь объемный вес и значительно выше. В среднем объемный вес пластмасс, за исключением поропластов, в 2 раза меньше веса алюминия и в 5—8 раз меньше веса стали, меди, свинца. Совершенно очевидно, что даже частичная замена этих металлов, а также силикатных материалов пластмассами дает значительное снижение веса сооружения, правда, в тех случаях когда пластические массы применяют в качестве конструктивного стенового материала, заполнителя в зданиях каркасного типа и материала междуэтажных перекрытий.

Прочностные характеристики пластмасс особенно высоки у пластмасс с листообразными наполнителями. Например, у стеклотекстолита предел прочности при растяжении достигает 2800 кГ/см2 (сталь марки Ст.З 3800—4500 кГ/см2), у дельта-древесины— 3500 кГ/см2 и у стекловолокнистого анизотропного материала (СВАМ) —4600 кГ/см2. Из приведенных данных видно, что слоистые пластики можно применять для несущих нагрузку конструктивных элементов зданий. Пределы прочности при сжатии этих материалов также достаточны, а именно: у дельта-древесины 2000, у стеклотекстолита 1600 и у СВАМ 4000 кГ/см2. Интересны и обнадеживающи с точки зрения применения пластмасс в строительстве соотношения у этих материалов пределов прочности при сжатии и растяжении, а именно: у дельта-древесины 0,7, у стеклотекстолита 0,6, у СВАМ 0,9, для сравнения — у стали 1, у сосны 0,4, у бетона 0,1. Таким образом, основные прочностные характеристики пластмасс по пределу прочности при сжатии и растяжении достаточно высоки и превосходят в этом отношении многие строительные материалы силикатной группы. Прочностные характеристики пористых пластмасс, например мипоры, очень невысоки, но удовлетворяют предъявляемым ним требованиям.

Важнейший показатель для конструктивных материалов — это коэффициент конструктивного качества материала, т. е. коэффициент, получаемый от деления прочности материала на его объемный вес. Широкое применение в строительстве материалов с высоким коэффициентом конструктивного качества предопределяет правильное решение одной из основных задач прогрессивного строительства — снижение веса зданий и сооружении. По этому показателю пластмассы занимают первое место. Коэффициент конструктивного качества кирпичной кладки составляет 0,02 (самый низкий из всех строительных материалов), бетона обыкновенного марки 150—0,06, стали марки Ст.З— 0,5, сосны — 0,7, дюралюминия—1,6, СВАМ — 2,2 и, наконец, дельта-древесины — 2,5. Таким образом, по коэффициенту конструктивного качества слоистые пластики являются непревзойденными до сих пор материалами, из них можно создавать самые прочные и самые легкие конструкции.

Теплопроводность плотных пластмасс колеблется от 0,2 до 0,6 ккал/м*ч*град. Наиболее легкие пористые пластмассы имеют теплопроводность всего лишь 0,026, т. е. их коэффициент теплопроводности приближается к коэффициенту теплопроводности воздуха. Совершенно очевидно, что низкая теплопроводность пластмасс позволяет широко использовать их в строительной технике.

Ценным свойством пластических масс является химическая стойкость, обусловленная химической стойкостью полимеров и наполнителей, которые использованы для изготовления пластмасс. Химическую стойкость следует понимать в широком смысле этого термина, включая и стойкость к воде, растворам солей и к органическим растворителям. Особенно стойкими к воздействию кислот и растворов солей являются пластмассы на основе политетрафторэтилена, полиэтилена, полиизобутилена, полистирола, поливинилхлорида. Химически стойкие пластмассы могут быть использованы в качестве строительных материалов при сооружении предприятий химической промышленности, канализационных сетей, а также для изоляции емкостей при хранении агрессивных веществ.

Ценным свойством пластмасс является их способность окрашиваться в различные цвета органическими и неорганическими пигментами. При подборе красителей и пигментов для пластмасс приходится, естественно, учитывать возможное химическое взаимодействие между полимером и красителем. Хорошая окрашиваемость пластмасс по всей толщине изделия дает возможность избегать периодических покрасок, чего требуют многие другие строительные материалы и что повышает эксплуатационные расходы.

Высокая устойчивость пластмасс к коррозийным воздействиям, ровная и плотная поверхность изделий, получаемая при формовании, также позволяют в ряде случаев отказаться от окрашивания. К качеству окраски пластических масс, применяемых как строительный материал, должны быть предъявлены значительно более высокие требования, чем к качеству окраски пластмасс, используемых, например, в самолетостроении и машиностроении. Это объясняется тяжелыми условиями службы строительных материалов и продолжительностью службы зданий. К покраске их должны быть предъявлены высокие требования в отношении устойчивости к атмосферным воздействиям, в частности к наиболее активному фактору — действию света.

Большой интерес представляет такое свойство пластмасс, как их низкая истираемость, т. е. способность сопротивляться истирающим усилиям. Это открывает большие перспективы для широкого применения пластических материалов в конструкциях полов. Испытания полов на основе полимеров дали хорошие результаты. Так, истираемость поливинилхлоридных плиток для полов составляет 0,05, линолеума глифталевого 0,06 г/см2.

Очень ценным свойством некоторых пластических масс без наполнителя является их прозрачность и высокие оптические свойства. Многие из них называются органическими стеклами и могут при снижении их стоимости найти достаточно широкое применение как материалы с более высокими свойствами, чем силикатное стекло. Органические стекла отличаются высокой прозрачностью и бесцветностью, но могут быть легко окрашены в различные цвета. Они пропускают лучи света в широком диапазоне волн, в частности ультрафиолетовую часть спектра, причем в этом отношении превосходят в десятки раз обычные стекла. Следует отметить их значительно меньший объемный вес. Так, объемный вес «стекла» из полистирола 1060 кг/м3, а обычного оконного 2500 кг/м3. Коэффициенты преломления полиметилметакрилатных и полистирольных «стекол» весьма близки к коэффициенту преломления обычного оконного стекла (1,52). Прозрачность органических стекол по сравнению с принятой за 100 (для алмаза) колеблется в пределах от 83 до 94 (для полиметилметакрилата). Органические стекла отличаются легкостью формования, так как требуют лишь незначительного нагрева. Достаточно высокие прочностные характеристики позволяют широко применять эти стекла в строительстве.

Ценнейшим свойством пластмасс является легкость их обработки — возможность придавать им разнообразные, даже самые сложные, формы. Бесстружечная обработка этих материалов (литье, прессование, экструзия) значительно снижает стоимость изготовляемых изделий. Столь же целесообразна по технологическим и экономическим соображениям станочная их переработка (пиление, сверление, фрезерование, строгание, обточка и др.), позволяющая полностью использовать стружку и отходы (при применении термопластичных полимеров).

Возможность склеивания пластмассовых изделий как между собой, так и с другими материалами, например с металлом, деревом и др., открывает большие перспективы для изготовления различных комбинированных клееных строительных изделий и конструкций.

Легкая свариваемость материалов из пластмасс (например, труб) в струе горячего воздуха позволяет механизировать и рационализировать некоторые виды строительных работ, в частности санитарно-технические.

Простота герметизации мест соединений и сопряжений для материалов из пластмасс позволяет широко их использовать в гидроизоляционных и тазоизоляционных конструкциях. Это свойство хорошо сочетается с легкой способностью пластмасс давать тонкие и прочные газо- и водонепроницаемые пленки, которые могут быть применены как надежный недорогой и удобный материал в гидроизоляционных и газоизоляционных конструкциях.

Способность многих из этих пленок не разрушаться под действием органических растворителей дает возможность применять их как изоляционный материал при строительстве бензохранилищ и других хранилищ для светлых нефтяных продуктов, имеющих очень широкое распространение в народном хозяйстве. Свойство пластмасс образовывать тонкие пленки в сочетании с их высокой адгезионной способностью по отношению к ряду материалов делает их незаменимым сырьем для производства на их основе лаков и красок. Лакокрасочные материалы среди других видов строительных материалов на основе полимеров будут особенно быстро и успешно развиваться как наименее полимероемкие. Понятие полимероемкости строительного материала является чрезвычайно ценным для перспективного планирования развития производства строительных материалов на основе полимеров.

При установлении этого понятия следует иметь в виду две составляющие полимероемкости — количественное содержание полимера в данном материале и абсолютный вес данного материала, приходящегося на единицу площади конструкции (стены, пола, кровли). Так, например, при использовании полиэтиленовой пленки толщиной 0,085 мм весом 80 г для двухслойной гидроизоляции площадью 1 м2 требуется 160 г полиэтилена, так как эта пленка состоит из чистого полиэтилена. Следовательно, полимероемкость полиэтиленовой пленки равна 160 г/м2. Полимероемкость поливинилхлоридного линолеума с 50% полимера, 1 м2 которого весит 2600 г, составит = 1300 г/м2. Низкую полимероемкость имеют окрасочные составы на основе полимеров — 50—75 г\м2. На широкое внедрение могут рассчитывать только те строительные материалы на основе полимеров, которые будут иметь низкий коэффициент полимероемкости.

К положительным свойствам пластмасс следует отнести также неограниченность и доступность сырьевой базы, на которую опирается промышленность полимеров, являющихся основой производства пластических масс. Синтетические пластики, на которые ориентируется развитие промышленности пластических масс, получают путем химических превращений на основе реакций поликонденсации и полимеризации из простейших химических веществ, которые в свою очередь получают из таких доступных видов сырья, как уголь, известь, воздух, нефть, газы и т. д.

К недостаткам пластмасс как строительного материала должен быть отнесен их низкий потолок теплостойкости (от 70 до 200°С). Это относится к большинству пластических масс и только некоторые типы пластиков, например кремнийорганические, политетрафторэтиленовые, могут работать при несколько более высоких температурах (до 350°С). Правда, этот недостаток может ощущаться лишь при нижнем пределе этой теплостойкости. Особенно важна теплостойкость для кровельных материалов на оснозе пластмасс, так как на кровле за счет радиации температура на поверхности материалов в некоторых географических районах может достигать 85°С.

Существенным недостатком пластических масс является их малая поверхностная твердость. Для пластмасс с волокнистыми наполнителями она достигает 25, для полистирольных и акриловых пластиков—15 кГ/мм2. Наиболее низкой твердостью отличаются целлюлозные пластики (этролы) — 4 —5 кГ/мм2 (у стали этот показатель около 450). Твердость по Бринеллю равна (в кГ/мм2): бумажных пластиков 25—30, текстолита — 35, асботекстолита — 45, дельта-древесины— 20, органического стекла — также примерно 20.

Значительным недостатком пластмасс является их высокий коэффициент термического расширения. Он колеблется в пределах (25—120) 10-6, в то время как для стали он равен всего) 10*10-6. Высокий коэффициент термического расширения пластмасс следует учитывать при проектировании строительных конструкций, особенно большеразмерных элементов, например стеновых панелей, Большой коэффициент термического расширения пластмасс: в сочетании с малой теплопроводностью обусловливает значительные остаточные внутренние напряжения, которые могут быть причиной появления трещин в строительных изделиях при резких изменениях температур. Совершенно очевидно, что эти напряжения особенно значительны при армировании пластмассовых изделий металлом.

Не следует игнорировать и еще одно отрицательное свойство пластмасс — их повышенную ползучесть. Даже жесткие типы пластмасс с минеральными порошкообразными наполнителями в гораздо большей степени, чем это наблюдается для керамических материалов, бетонов и металлов, обладают медленно развивающимся пластическим течением — ползучестью, сильно возрастающей даже при сравнительно незначительных изменениях температур.

Существенным недостатком пластмасс является их горючесть. Однако есть все основания полагать, что в ближайшее время этот недостаток будет преодолен. Разрабатывая новые виды полимеров — не только карбоцепные, т. е. те, основная цепь которых состоит из углеродных атомов, но и гетероцепные, основная цепь которых наряду с углеродными содержит также и другие атомы, и в первую очередь кремния, — химическая промышленность дает строительству новые виды трудносгораемых пластмасс.

Как отрицательное свойство некоторых пластмасс следует отметить их токсичность. Последняя в ряде случаев зависит не только от токсичности самих полимеров, но и токсичности тех компонентов, которые входят в пластмассы (стабилизаторы, пластификаторы, красители). Токсичность полимерных строительных материалов изучена еще недостаточно, и этому вопросу следует уделить серьезное внимание, так как это особенно важно для тех пластмасс, которые применяют во внутренней отделке жилых помещений и в системах водоснабжения.

К неизученным свойствам пластмасс следует отнести их долговечность. Между тем вопросы долговечности материалов, изменяемости их свойств во времени являются решающими и определяющими возможность и целесообразность их применения в строительстве.

Источник

Понравилась статья? Поделиться с друзьями:

Читайте также:

  • Пластик для строительства зданий
  • Пластик в строительстве новые технологии
  • Пластик в дорожном строительстве
  • Планы цдс по строительству
  • Планы строительства школ в краснодаре

  • Stroit.top - ваш строительный помощник
    0 0 голоса
    Article Rating
    Подписаться
    Уведомить о
    0 Комментарий
    Старые
    Новые Популярные
    Межтекстовые Отзывы
    Посмотреть все комментарии