3D Расчет треугольной деревянной фермы
Инструкция для калькулятора расчета треугольной фермы
Введите значения размеров в миллиметрах:
X – Длина треугольной стропильной фермы зависит от размера пролета, который необходимо накрыть и способа ее крепления к стенам. Деревянные треугольные фермы применяют для пролетов длиной 6000-12000 мм. При выборе значения X нужно учитывать рекомендации СП 64.13330.2011 «Деревянные конструкции» (актуализированная редакция СНиП II-25-80).
Y – Высота треугольной фермы задается соотношением 1/5-1/6 длины X.
Z – Толщина, W – Ширина бруса для изготовления фермы. Искомое сечение бруса зависит от: нагрузок (постоянные – собственный вес конструкции и кровельного пирога, а также временно действующие – снеговые, ветровые), качества применяемого материала, длины перекрываемого пролета. Подробные рекомендации о выборе сечения бруса для изготовления фермы, наведены в СП 64.13330.2011 «Деревянные конструкции», также следует учитывать СП 20.13330.2011 «Нагрузки и воздействия». Древесина для несущих элементов деревянных конструкций должна удовлетворять требованиям 1, 2 и 3-го сорта по ГОСТ 8486-86 «Пиломатериалы хвойных пород. Технические условия».
S – Количество стоек (внутренних вертикальных балок). Чем больше стоек, тем выше расход материала, вес и несущая способность фермы.
Если необходимы подкосы для фермы (актуально для ферм большой протяженности) и нумерация деталей отметьте соответствующие пункты.
Отметив пункт «Черно-белый чертеж» Вы получите чертеж, приближенный к требованиям ГОСТ и сможете его распечатать, не расходуя зря цветную краску или тонер.
Нажмите «Рассчитать».
Треугольные деревянные фермы применяют в основном для кровель из материалов требующих значительного уклона. Онлайн калькулятор для расчета деревянной треугольной фермы поможет определить необходимое количество материала, выполнит чертежи фермы с указанием размеров и нумерацией деталей для упрощения процесса сборки. Также с помощью данного калькулятора Вы сможете узнать общую длину и объем пиломатериалов для стропильной фермы.
Основы расчёта ферм: ручной и машинный счёт
Фермами называют плоские и пространственные стержневые конструкции с шарнирными соединениями элементов, загружаемые исключительно в узлах. Шарнир допускает вращение, поэтому считается, что стержни под нагрузкой работают только на центральное растяжение-сжатие. Фермы позволяют значительно сэкономить материал при перекрытии больших пролётов.
Также выделяют простейшие и сложные фермы. Простейшими называют фермы, образованные последовательным присоединением шарнирного треугольника. Такие конструкции отличаются геометрической неизменяемостью, статической определимостью. Фермы со сложной структурой, как правило, статически неопределимы.
Для успешного расчёта необходимо знать виды связей и уметь определять реакции опор. Эти задачи подробно рассматриваются в курсе теоретической механики. Разницу между нагрузкой и внутренним усилием, а также первичные навыки определения последних дают в курсе сопротивления материалов.
Рассмотрим основные методы расчёта статически определимых плоских ферм.
Способ проекций
На рис. 2 симметричная шарнирно-опёртая раскосная ферма пролётом L = 30 м, состоящая из шести панелей 5 на 5 метров. К верхнему поясу приложены единичные нагрузки P = 10 кН. Определим продольные усилия в стержнях фермы. Собственным весом элементов пренебрегаем.
Опорные реакции определяются путём приведения фермы к балке на двух шарнирных опорах. Величина реакций составит R (A) = R (B) = ∑P/2 = 25 кН. Строим балочную эпюру моментов, а на её основе — балочную эпюру поперечных усилий (она понадобится для проверки). За положительное направление принимаем то, что будет закручивать среднюю линию балки по часовой стрелке.
Метод вырезания узла
Метод вырезания узла заключается в отсечении отдельно взятого узла конструкции с обязательной заменой разрезаемых стержней внутренними усилиями с последующим составлением уравнений равновесия. Суммы проекций сил на оси координат должны равняться нулю. Прикладываемые усилия изначально предполагаются растягивающими, то есть направленными от узла. Истинное направление внутренних усилий определится в ходе расчёта и обозначится его знаком.
Рационально начинать с узла, в котором сходится не более двух стержней. Составим уравнения равновесия для опоры, А (рис. 4).
Условие равновесия для узла 1:
Метод сечений
Ферму мысленно разделяют сечением, проходящим как минимум по трём стержням, два из которых параллельны друг другу. Затем рассматривают равновесие одной из частей конструкции. Сечение подбирают таким образом, чтобы сумма проекций сил содержала одну неизвестную величину.
Проведём сечение I-I (рис. 5) и отбросим правую часть. Заменим стержни растягивающими усилиями. Просуммируем силы по осям:
Стойка 9−3 сжимается.
Способ проекций удобно применять в расчётах ферм с параллельными поясами, загруженными вертикальной нагрузкой. В этом случае не придётся вычислять углы наклона усилий к ортогональным осям координат. Последовательно вырезая узлы и проводя сечения, мы получим значения усилий во всех частях конструкции. Недостатком способа проекций является то, что ошибочный результат на ранних этапах расчёта повлечёт за собой ошибки во всех дальнейших вычислениях.
Способ моментной точки
Способ моментной точки требует составлять уравнение моментов относительно точки пересечения двух неизвестных сил. Как и в методе сечений, три стержня (один из которых не пересекается с остальными) разрезаются и заменяются растягивающими усилиями.
Рассмотрим сечение II-II (рис. 5). Стержни 3−4 и 3−10 пересекаются в узле 3, стержни 3−10 и 9−10 пересекаются в узле 10 (точка K). Составим уравнения моментов. Суммы моментов относительно точек пересечения будут равняться нулю. Положительным принимаем момент, вращающий конструкцию по часовой стрелке.
Из уравнений выражаем неизвестные:
N(9−10) = (2d∙R(A) — d∙P)/h = (2∙5м∙25кН — 5м∙10кН)/5м = 40 кН (растяжение)
Способ моментной точки позволяет определить внутренние усилия независимо друг от друга, поэтому влияние одного ошибочного результата на качество последующих вычислений исключено. Данным способом можно воспользоваться в расчёте некоторых сложных статически определимых ферм (рис. 6).
Требуется определить усилие в верхнем поясе 7−9. Известны размеры d и h, нагрузка P. Реакции опор R(A) = R(B) = 4,5P. Проведём сечение I-I и просуммируем моменты относительно точки 10. Усилия от раскосов и нижнего пояса не попадут в уравнение равновесия, так как сходятся в точке 10. Так мы избавляемся от пяти из шести неизвестных:
Аналогично можно рассчитать остальные стержни верхнего пояса.
Признаки нулевого стержня
Нулевым называют стержень, в котором усилие равно нулю. Выделяют ряд частных случаев, в которых гарантированно встречается нулевой стержень.
Пользуясь методом вырезания узлов и зная правила нулевого стержня, можно проводить проверку расчётов, проведённых другими методами.
Расчёт ферм на персональном компьютере
Современные вычислительные комплексы основаны на методе конечного элемента. С их помощью осуществляют расчёты ферм любого очертания и геометрической сложности. Профессиональные программные пакеты Stark ES, SCAD Office, ПК Лира обладают широким функционалом и, к сожалению, высокой стоимостью, а также требуют глубокого понимания теории упругости и строительной механики. Для учебных целей и подойдут бесплатные аналоги, например Полюс 2.1.1.
В Полюсе можно рассчитывать плоские статически определимые и неопределимые стержневые конструкции (балки, фермы, рамы) на силовое воздействие, определять перемещения и температурное воздействие. Перед нами эпюра продольных усилий для фермы, изображённой на рис. 2. Ординаты графика совпадают с полученными вручную результатами.
Порядок работы в программе Полюс
В качестве примера рассчитаем сложную раскосную ферму, рассмотренную в методе моментной точки (рис. 6). Примем размеры и нагрузки: d = 3м, h = 6м, P = 100Н. По выведенной ранее формуле значение усилия в верхнем поясе фермы будет равно:
Эпюра продольных усилий, полученная в Полюсе:
Значения совпадают, конструкция смоделирована верно.
Расчет металлической фермы
Зачастую у нас нету возможности применить обычную балку для того или иного строения, и мы вынуждены применять более сложную конструкцию, которая называется ферма.
Расчет металлической фермы хоть и отличается от расчета балки, но нам не составит труда ее рассчитать. От вас будет требоваться лишь внимание, начальные знания алгебры и геометрии и час-два свободного времени.
Итак, начнем. Перед тем, как рассчитывать ферму, давайте зададимся какой-нибудь реальной ситуацией, с которой вы бы могли столкнуться. Например, вам необходимо перекрыть гараж шириной 6 метров и длиной 9 метров, но ни плит перекрытия, ни балок у вас нету. Только металлические уголки различных профилей. Вот из них мы и будем собирать нашу ферму!
В последующем на ферму будут опираться прогоны и профнастил. Опирание фермы на стены гаража – шарнирное.
Затем нужно собрать все нагрузки на вашу ферму (посмотреть можно в статье Расчет навеса). Пусть у вас получился следующий вариант загружения:
Далее нам нужно пронумеровать все элементы, узлы фермы и задать опорные реакции (элементы подписаны зеленым, а узлы голубым).
Чтобы найти наши реакции, запишем уравнения равновесия усилий на ось y и уравнение равновесия моментов относительно узла 2.
Из второго уравнения находим опорную реакцию Rb:
Зная, что Rb=400 кг, из 1-ого уравнения находим Ra:
Если получилось так, что усилия в стержне направлены от центра, значит наш стержень стремится растянуться (вернуться в первоначальное положение), а значит сам он сжат. А если усилия стержня направлены к центру, значит стержень стремится сжаться, то есть он растянут.
Итак, перейдем к расчету. В узле 1 всего 2 неизвестных величины, поэтому рассмотрим этот узел (направления усилий S1 и S2 задаем из своих соображений, в любом случае у нас по итогу получится правильно).
Рассмотрим уравнения равновесия на оси х и у.
Из 1-ого уравнения видно, что S2=0, то есть 2-ой стержень у нас не загружен!
Из 2-ого уравнения видно, что S1=100 кг.
Поскольку значение S1 у нас получилось положительным, значит направление усилия мы выбрали правильно! Если же оно бы получилось отрицательным, то направление стоит поменять и знак изменить на «+».
Зная направление усилия S1, мы можем представить, что из себя представляет 1-ый стержень.
Поскольку одно усилие было направлено в узел (узел 1), то и второе усилие будет направлено в узел (узел 2). Значит наш стержень старается растянуться, а значит он сжат.
Далее рассмотрим узел 2. В нем было 3 неизвестных величины, но поскольку мы уже нашли значение и направление S1, то остается только 2 неизвестных величины.
Опять же составим уравнения на оси х и у:
Из 1-ого уравнения S3 = 540,83 кг (стержень №3 сжат).
Из 2-ого уравнения S4 = 450 кг (стержень №4 растянут).
Рассмотрим 8-ой узел:
Составим уравнения на оси х и у:
Рассмотрим 7-ой узел:
Составим уравнения на оси х и у:
ИЗ 1-ого уравнения находим S12:
Из 2-ого уравнения находим S10:
Дальше рассмотрим узел №3. Насколько мы помним 2-ой стержень у нас нулевой, а значит рисовать его не будем.
Уравнения на оси х и у:
А здесь нам уже понадобится алгебра. Я не буду подробно расписывать методику нахождения неизвестных величин, но суть такова – из 1-ого уравнения выражаем S5 и подставляем ее во 2-ое уравнение.
Составим уравнения на оси х и у:
Так же, как и в 3-ем узле найдем наши неизвестные.
Из 1-ого уравнения находим S7:
В качестве проверки наших расчетов рассмотрим 4-ый узел (усилий в стержне №9 нету):
Составим уравнения на оси х и у:
В 1-ом уравнении получается:
Данная погрешность допустима и связана скорее всего с углами (2 знака после запятой вместо 3-ех).
По итогу у нас получатся следующие значения:
Решил перепроверить все наши расчеты в программе и получил точно такие же значения:
При расчете металлической фермы после того, как все внутренние усилия в стержнях найдены, мы можем приступать к подбору сечения наших стержней.
Для удобства все значения сведем в таблицу.
Для расчетов нам понадобится не фактическая длина, а расчетная. Расчетную длину мы сможем найти в СНиП II-23-81* «Стальные конструкции». Таблица приведена ниже:
Как видно из таблицы, мы будем проверять стержень фермы в двух направлениях:
— из плоскости фермы (перпендикулярно плоскости фермы)
Чтобы найти расчетную длину стержня из плоскости фермы, нам нужно посмотреть, через какое расстояние этот стержень раскреплен с другой фермой. Например, по верхнему поясу наша ферма раскреплена связью/прогоном с другой фермой по центру. Значит расчетная длина верхнего пояса равна половине его длины. Если же верхний пояс раскреплен из плоскости в каждом узле, то расчетная длина стержня из плоскости такая же, как и в плоскости, и равна значениям в таблице выше.
Дальше, в зависимости от того сжат стержень или нет, по формуле мы рассчитываем необходимую площадь поперечного сечения.
При расчете сжатых стержней мы пользуемся формулой (необходимая площадь стержня):
По данной формуле можно рассчитать в этом онлайн расчете.
А также проверяем наш стержень на максимальную гибкость. Как правило, максимальная гибкость не должна быть больше 100-150.
Где lx – расчетная длина в плоскости фермы
Ly – расчетная длина из плоскости фермы
Ix – радиус инерции сечения вдоль оси х
Iy – радиус инерции сечения вдоль оси у
При расчете растянутых стержней мы пользуемся следующей формулой (необходимая площадь стержня):
Данной формулой можно воспользоваться в онлайн расчете растянутых элементов.
Например, два спаренных уголка 32х3 выдержат усилие равное 3.916*2 = 7,832 т.