Ррл расшифровка в строительстве
речевые рекомендации лётчику
Словарь: Словарь сокращений и аббревиатур армии и спецслужб. Сост. А. А. Щелоков. — М.: ООО «Издательство АСТ», ЗАО «Издательский дом Гелеос», 2003. — 318 с.
Словарь: Словарь сокращений и аббревиатур армии и спецслужб. Сост. А. А. Щелоков. — М.: ООО «Издательство АСТ», ЗАО «Издательский дом Гелеос», 2003. — 318 с.
Смотреть что такое «РРЛ» в других словарях:
РРЛ — радиорелейная линия … Словарь сокращений русского языка
ретранслятор без выделения (на РРЛ) — — [Л.Г.Суменко. Англо русский словарь по информационным технологиям. М.: ГП ЦНИИС, 2003.] Тематики информационные технологии в целом EN through repeater … Справочник технического переводчика
Аппаратура основной полосы телевизионного ствола РРЛ (АОПТВ) — 24. Аппаратура основной полосы телевизионного ствола РРЛ (АОПТВ) Совокупность устройств, предназначенных для объединения (разделения) сигнала изображения, сигналов звукового сопровождения, сигналов звукового вещания и вспомогательных сигналов… … Словарь-справочник терминов нормативно-технической документации
Высокочастотный тракт радиоствола РРЛ — 14. Высокочастотный тракт радиоствола РРЛ Искусственная среда распространения сигнала, начинающаяся со входа промежуточной частоты первого передатчика и заканчивающаяся выходом промежуточной частоты последнего приемника радиоствола Источник: СТ… … Словарь-справочник терминов нормативно-технической документации
Оконечная аппаратура телевизионного ствола РРЛ (ОАТВ) — 23. Оконечная аппаратура телевизионного ствола РРЛ (ОАТВ) Совокупность модулятора (демодулятора) и аппаратуры основной полосы телевизионного ствола Источник: СТ СЭВ 4838 84: Аппаратура радиорелейная. Классификация и основные параметры цепей стыка … Словарь-справочник терминов нормативно-технической документации
Оконечная аппаратура телефонного ствола РРЛ (ОАТФ) — 20. Оконечная аппаратура телефонного ствола РРЛ (ОАТФ) Совокупность аппаратуры, включающая модулятор (демодулятор) и аппаратуру основной полосы телефонного ствола Источник: СТ СЭВ 4838 84: Аппаратура радиорелейная. Классификация и основные… … Словарь-справочник терминов нормативно-технической документации
Радиорелейная линия связи прямой видимости (РРЛ) — 10. Радиорелейная линия связи прямой видимости (РРЛ) Радиорелейная линия связи, соседние станции которой размещаются на расстоянии, обеспечивающем радиосвязь прямой видимости Источник: СТ СЭВ 4838 84: Аппаратура радиорелейная. Классификация и… … Словарь-справочник терминов нормативно-технической документации
Радиоствол РРЛ — 13. Радиоствол РРЛ Совокупность работающих в последовательной цепи передатчиков, приемников антенно фидерных трактов и среды распространения радиоволн, обеспечивающая передачу сигнала в заданной полосе частот Источник: СТ СЭВ 4838 84: Аппаратура… … Словарь-справочник терминов нормативно-технической документации
Зачем нужна радиорелейная связь
Радиорелейная связь (РРЛ) – вид радиосвязи, образующийся в результате работы цепочки принимающих и передающих радиостанций. Наземная радиорелейная связь функционирует на миллиметровых, сантиметровых и дециметровых волнах. РРЛ-сети играют важную роль в сотовой связи, поскольку позволяют передавать очень большие объемы трафика при минимальных затратах. В будущем эта технология способна покрыть потребности сотовых операторов в пропускной способности на все 100%, а значит обеспечить качественную работу множества различных услуг и приложений, подключение к интернету устройств и вещей.
Главное преимущество РРЛ связано с возможностью увеличить пропускную способность как backhaul-, так и fronthaul-сетей. РРЛ позволяет использовать сразу несколько частотных диапазонов и таким образом увеличить емкость сети при минимальных расходах. Например, используя частоты в диапазоне E-band (70/80 ГГц), можно увеличить пропускную способность в семь раз и при этом разгрузить традиционные для сотовой связи частоты. Это имеет большое значение в свете запуска в коммерческую эксплуатацию сетей пятого поколения (5G), запланированного на 2020 год.
комментирует директор по развитию сети ПАО «ВымпелКом» Сергей Кнышев.
По прогнозам Ericsson к 2020 году около 65% всех типов базовых станций в мире в качестве среды передачи будут использовать РРЛ (исключение составят Китай, Япония, Южная Корея и Тайвань, где высока степень проникновения оптического волокна). При этом активней всего будет осваиваться частотный диапазон E-band, на который в 2020 году будет приходиться около 20% вновь развертываемых РРЛ систем. К этому времени доля традиционных частотных диапазонов 6-42 ГГц составит 70% для вновь развертываемых РРС. Впрочем, популярность РРЛ будет сильно варьироваться от региона к региону. Например, в Северной Америке к 2020 году число подключенных через РРЛ базовых станций достигнет 20%, а в Индии этот показатель составит 70%. Столь существенная разница сложилась исторически и связана, в основном, со степенью зрелости телекоммуникационных рынков и доступностью услуг фиксированной связи.
Используемые частотные диапазоны
В настоящее время, для радиорелейной связи используется полоса шириной около 40 ГГц, однако она доступна целиком не во всех странах мира. В РРЛ выделяется 5 диапазонов, каждый из которых имеет свои характеристики:
6–13 ГГц Это низкие частотные диапазоны, они менее чувствительны к дождю, и по этой причине применяются в дождливых регионах на протяженных транзитных участках.
Пропускная способность в этом диапазоне ограничена, однако проблема решается агрегацией нескольких каналов. Чаще всего используется полоса 7 ГГц, менее популярны 6 ГГц и 8 ГГц. Что касается более высоких участков этого спектра, в большей части стран мира используется 13 ГГц, а в Северной Америке – 11 ГГц. Полоса 10 ГГц эксплуатируется в основном на Ближнем Востоке.
15–23 ГГц Эти частоты сейчас используются во многих странах мира, и они продолжат играть важную роль в ближайшие годы. С недавних пор в данных диапазонах используются более широкие каналы, и это при сочетании с технологиями, повышающими эффективность использования спектра, позволит увеличить пропускную способность сетей в будущем.
26–42 ГГц В этих диапазонах существуют как широко используемые частоты, так и не используемые вовсе. В Европе операторы активно работают в диапазоне 38 ГГц, и в дальнейшем ситуация не изменится. Также операторами занят диапазон 26 ГГц, и растет интерес к частотам в диапазонах 28 ГГц и 32 ГГц. Большие перспективы у частотных каналов шириной 56 МГц и 112 МГц, поскольку они способны обеспечить гигабитные скорости передачи данных.
60 ГГц Диапазон V-band (58,25-63,25 ГГц) идеально подходит для приложений малых сот, так как обеспечивает высокую пропускную способность из-за большой ширины каналов и низкий уровень интерференции из-за большого затухания. До настоящего времени диапазон 60 ГГц активно не использовался, поскольку уличные сети из малых сот не развертывались в больших масштабах. В ряде стран операторы уже начали строить РРЛ сети в этом диапазоне, однако в во многих уголках мира его статус остается неясным. Сейчас важно определиться с регулированием совместного использования данного диапазона, для того, чтобы операторы и разные службы не создавали помех для работы друг друга.
70/80 ГГц В последние годы растет число развертываний в диапазоне E-band, главным преимуществом которого является возможность обеспечить очень высокую пропускную способность. Эти частоты применяются для передачи данных на сравнительно короткое расстояние в 2-5км, однако этого достаточно для городских условий. Во многих странах существует упрощенный режим лицензирования в данном диапазоне, который стимулирует интерес к нему со стороны операторов.
Кроме того, сейчас ведутся дискуссии об использовании диапазонов W-band (92-114,5 ГГц) и D-band (141–174,8 ГГц). В частности, компания Ericsson и Технический университет Чалмерса недавно продемонстрировали работу чипсета, обеспечивающего передачу данных на скорости 40 Гбит/сек в диапазоне 140 ГГц.
Простота использования, быстрота развертывания и высокая пропускная способность сетей востребованы во всех отраслях промышленности. РРЛ используется в секторе ЖКХ для передачи трафика SCA DA, для которого важна высокая пропускная способность. Благодаря надежности и гибкости РРЛ применяется в работе государственных служб, в частности, полиции. Также РРЛ используется в корпоративных сетях в качестве технологии, дополняющей оптоволокно. Интернет-провайдеры применяют радиорелейную связь для оказания услуг домашним хозяйствам, поскольку такие сети строятся в короткие сроки и позволяют быстро начать получать доход от предоставления услуг доступа в интернет. РРЛ все чаще используется для трансляции эфирного телевидения, особенно больше значение данная технология приобрела в связи с переходом с аналогового на цифровое вещание. Кроме того, РРЛ применяется в создании мультисервисных сетей, в которых требуется обеспечить стабильность передачи и защиту данных.
Варианты развертывания РРЛ-сетей
Для того, чтобы в полной мере оценить преимущества концепции сетевых узлов, специалисты компании Ericsson изучили типичный сетевой кластер из узлов, состоящих из 109 транзитных сегментов, построенных на базе радиорелейного оборудования шести различных вендоров. При проектировании сети использовалась звездная топология, в которой центральный узел агрегирует весь трафик со всех узлов РРЛ. При этом для кластера был предусмотрен план модернизации, рассчитанный на пять лет и учитывающий поддержку растущего 3G- и 4G-трафика.
Было разработано три модели:
• пошаговая (hop-by-hop) модель,
• модель с использованием сетевых узлов,
• модель, комбинирующая оба варианта.
План развития сети состоял из следующих этапов:
• Рост скорости передачи данных по сети 3G: 30 Мбит/сек в первый год с дальнейшим ростом на 10% в год;
• Расширение сети 4G: 10 МГц в первый год, 10+10 МГц во второй и третий годы, 10+20 МГц в четвертый и пятый годы.
В результате проведенных исследований выяснилось, что использование сетевых узлов является наиболее эффективным и наименее затратным способом увеличения пропускной способности, при котором новый функционал внедряется шаг за шагом. После пяти лет использования сети, состоящей из узлов, затраты сократились на 40%. Это было достигнуто за счет повторного использования оборудования, обеспечивающего экономию на расходах, связанных с покупкой нового оборудования и комплектующих. В то же время, по мере развития сети пошаговая модель потребовала полной замены всего оборудования, а также апгрейда базовых станций и кабелей. Совместное использование коммутаторов, вентиляторов, блоков питания и процессоров позволило снизить потребление энергии и, следовательно, сократить расходы на оборудование при расширении существующих сайтов.
Модель на базе сетевых узлов обеспечила сокращение количества оборудования в три раза. Это привело к упрощению операций и процессов поддержки работы сети, что в конечном итоге вылилось в снижение трудозатрат и издержек. Также удалось добиться снижения затрат за счет сокращения времени, требующегося для решения проблем с производительностью и отказами оборудования. Кроме того, активно применялся апгрейд действующего оборудования, который также уменьшил возможные расходы. В придачу к этому сокращение количества элементов оборудования позволило улучшить процессы мониторинга и минимизировать время, требующееся для восстановления сети после отказов и время, необходимое для принятия мер для улучшения пользовательских характеристик.
Помимо всего перечисленного, в ходе испытаний специалисты Ericsson выяснили, что при применении модели с сетевыми узлами требуется в три раза меньшая площадь, чем при использовании пошаговой модели. Сокращение количества стоек при узловой модели позволяет сэкономить на покупке шкафов. Дело в том, что на многих сайтах расходы на шкафы и соответсвующую инфраструктуру могут превышать расходы на транспортное оборудование, а при строительстве сети на основе узлового подхода можно избежать этих расходов. Также при такой модели в пятилетней перспективе значительно сокращается показатель OPEX, поскольку установка меньшего количества оборудования требует меньше места, что ведет к уменьшению затрат на аренду и меньшему энергопотреблению.
Современная радиорелейная связь
В сегодняшней статье мы рассмотрим:
Применение радиорелейной связи
Радиорелейные станции (РРС) обычно используются:
Основные отличия РРЛ от беспроводной связи по Wi-Fi:
Кроме того, в радиорелейной связи, в отличие от обычного WiFi, активно применяется:
Преимущества и недостатки радиорелейного канала связи по сравнению с волоконнооптическими линиями:
Преимущества:
Несмотря на узкую нишу, существует довольно много различных типов радиорелейных станций. Ниже мы рассмотрим их основную классификацию и общие характеристики, а также серию радиорелеек Ubiquiti, оптимальных по соотношению цена/производительность для украинского сегмента рынка.
Частота работы радиорелейных станций
Так как разбег частот большой, особенности развертывания линков на них и характеристики связи серьезно отличаются. Можно выделить основные закономерности:

Условия развертывания РРЛ и дальность связи
Также для дальности связи, как мы уже сказали выше, имеет значение диапазон, в котором работает радиорелейное оборудование:
Технологии PDH и SDH
Все используемые сейчас РРЛ разделяются на два основных типа:

| Название потока | Как образуется | Скорость |
| E1 | 32 канала данных (по 64 кбит/сек каждый) собираются в единый поток E1, который считается базовым потоком PDH. | 2 Мбит/сек |
| E2 | Мультиплексирование (объединение) 4 потоков E1. | 8 Мбит/сек |
| E3 | Мультиплексирование (объединение) 4 потоков E2. | 34 Мбит/сек |
| E4 | Мультиплексирование (объединение) 4 потоков E3. | 139 Мбит/сек |
| Обозначение потока | Пропускная способность |
| STM-1 | 155 Мбит/сек |
| STM-4 | 622 Мбит/сек |
| STM-16 | 2,5 Гбит/сек |
| STM-64 | 10 Гбит/сек |
| STM-256 | 40 Гбит/сек |
| STM-1024 | 160 Гбит/сек |
При этом оборудование SDH полностью совместимо с радиорелейными станциями, спроектированными под PDH.
Надежность радиорелейной связи
Конструкция радиорелейных станций
Радиорелейные станции можно разделить на два типа.
Здесь нужно уточнить, что производители по-разному распределяют функционал между внутренним и наружным блоками, вплоть до того, что внутреннему модулю могут остаться только функции питания, защиты и подключения к LAN-сети, а большая часть активного функционала передается во внешний блок.
Внешний и внутренний блоки соединяются коаксиальным кабелем, антенна и внешний модуль могут соединяться непосредственно или также с помощью кабеля. Одним из очевидных недостатков такой конструкции является кабельное соединение, приводящее к потерям на пути от передатчика к антенне, а также двойное преобразование сигнала с частоты на частоту.
В качестве примера радиорелейных станций интегрированного типа можно привести серию AirFiber компании Ubiquiti.
Радиорелейные станции AirFiber стали на тот момент по-настоящему революционным событием: компания предлагала пропускную способность до 1,5 Гбит/сек в полном дуплексе (750 Мбит/сек в одну сторону) на расстоянии до 13 км по очень приятной цене (для оборудования такого класса).
В радиорелейных станциях Ubiquiti:
Иллюстрация технологии адаптивной модуляции:
Сейчас компания выпускает 4 модели РРЛ со встроенными антеннами и 6 моделей без антенн, к которым можно подключать антенны разного усиления.
HDD (полудуплекс), FDD (полный дуплекс)
HDD (полудуплекс), FDD (полный дуплекс)
HDD (полудуплекс), FDD (полный дуплекс)
HDD (полудуплекс), FDD (полный дуплекс)












