Стандартные ошибки при строительстве домов из газобетонных блоков
Стандартные ошибки при строительстве домов из газобетонных блоков
Эта наиболее опасная группа ошибок при строительстве домов из газобетонных блоков, так как в результате неверного проектирования здания, пренебрежения технологиями строительства целостность несущих конструкций дома может быть нарушена. Диапазон негативных последствий этой группы ошибок может простираться от образования относительно стабильных трещин в стенах здания из газобетона до обрушения конструкций.
Распространенной ошибкой является отсутствие перевязки или гибких связей при сопряжении стен из газобетонных блоков. Соединение стен из газобетонных блоков может быть жестким или с помощью гибких связей.
Жесткое сопряжение возможно, если разница нагрузок на стены не превышает 30% (то есть сопрягаются стены одного вида – несущие с несущими, самонесущие с самонесущими или ненесущие с ненесущими). Если сопрягаются стены разного назначения (несущие с ненесущими или самонесущими), с разницей нагрузок, превышающие 30%, то сопряжение выполняется исключительно гибкими связями, допускающими деформации. Распространенными ошибками является отсутствие связей между сопрягаемыми стенами, либо использование жестких связей, таких как забитый в стену обрезок арматуры, в разнонагруженных стенах.
Для горизонтального армирования кладки из газобетонных блоков используется стальная арматура переменного профиля диаметром минимум 6 мм (по требованию некоторых производителей газобентона – 8 мм), заглубляемая в штробы и закрепляемая клеем для газобетона или пластичным цементным раствором.
Нельзя использовать для конструкционного армирования гладкую проволоку («катанку»), так как она не обладает свойствами стержневой арматуры.
Для всех построек из газобетонных блоков без несущего железобетонного каркаса необходимо выполнять конструкционное горизонтальное армирование для предупреждения образования трещин вокруг оконных, дверных и иных проемов в стенах из газобетонных блоков. При этом армируются ряды не только ряды кладки над проемом (при отсутствии надпроемной перемычки в проемах до 120 см), но и ряды кладки рядом с проемом и под проемом (см. схемы армирования).
При определенных условиях ряде условий строительства домов из газобетонных блоков необходимо выполнять и вертикальное армирование стен:
1. Вертикально армируются стен, подверженные или потенциально подверженные боковым (латеральным) нагрузкам (заборы, отдельностоящие стены, подземные этажи зданий, подвалы, стены зданий на крутых склонах, стены зданий в зоне схода селей, лавин, в регионах с сильными ветрами, ураганами и торнадо, в сейсмоопасных районах).
2. Увеличение несущей способности стен здания из газобетона. Например, использование вертикального армирования позволяет применять при кладке стен газобетон минимальной плотности, отличающийся меньшей теплопроводностью.
3. Вертикальное армирование позволяет организовать восприятие и передачу нагрузки от значительной сосредоточенной нагрузки (например, от длиннопролетной балки).
4. Усиление перевязки кладки сопрягаемых стен и углов вертикальным армированием.
5. Усиление проемов в стенах.
6. Усиление небольших простенков.
7. Вертикальное армирование колонн из газобетона.
Вертикальное армирование может устраиваться в специальных О-блоках, поставляемых многими зарубежными производителями изделий из газобетона. Также О-блоки можно изготовить самостоятельно, используя бур с коронкой диаметром 12-15 см. Вертикальное армирование выполняется арматурой d14. Арматура должна быть размещена не далее 61 см от проемов, свободных концов стен из газобетона.
В основном, к этой группе относятся ошибки наружной отделки, наружного утепления стен из газобетона, приводящие к увеличению теплопроводности стен, ухудшению микроклимата в доме и росту затрат на отопление.
Самой распространенной ошибкой в строительстве, проистекающей из игнорирования особенностей открытой ячеистой структуры газобетона и ее свойств проницаемости для газов и водяного пара, является создание с внешней стороны стены из газобетона паронепроницаемых слоев или слоев с паропроницаемостью ниже, чему у газобетонной кладки. Такие конструкции противоречат требованиям к паропроницаемости многослойных стен, изложенным в Своде правил СП 23-101-2004 «Проектирование тепловой защиты зданий» которые предусматривают, что каждый слой такой стены, расположенный кнаружи от предыдущего, должен иметь более высокую паропроницаемость. При несоблюдении этого правила внутренние слои стен, обладающие гигроскопичной проницаемой структурой могут постепенно отсыревать, так как не весь водяной пар будет выводиться наружу, что приведет к повышению теплопроводности стен (утеплителя). Это правило применимо к отапливаемым зданиям для постоянного проживания. В неотапливаемых зданиях такая проблема не возникает, а в зданиях, отапливаемых время от времени (дачные дома, отапливаемые только во время приездов в отпуск или на выходные) актуальность проблемы зависит от индивидуальных условий. Смотрите пример разрушения стены из газобетона от промерзания во влажном состоянии.
Чем же строители любят «запечатывать» снаружи проницаемые для газов и паров газобетонные блоки? На этом поприще есть два абсолютных лидера: кирпичная кладка и экструдированный пенополистрол (ЭППС). Обычно строители совершают эти ошибки под самыми благовидными предлогами: «защитить» нежный газобетон от атмосферных воздействий «крепким» кирпичом и как следует «утеплить» газобетон с помощью ЭППС и заодно защитить его от наружной влаги и промерзания.
Хотя основное условие долговечности для дома из газобетонных блоков точно такое же как и для деревнного дома: пористый материал стен должен иметь возможность высыхать, отдавая влагу в атмосферу.
Встречаются и комбинированное использование ЭППС с обкладкой его кирпичом. Близки по эффекту блокирования паропереноса и облицовка фасадов из газобетона термопанелями из пенополиуретана и клинкерной плитки «под кирпич». Кирпичная кладка, как и ЭППС обладают практически нулевой паропроницаемостью. К конструктивным решениям, значительно ухудшающим паропроницаемость многослойных стен с использованием газобетона, относятся наружное утепление со слабо паропроницаемым пенополистролом, и устройство кирпичных фасадов с невентилируемым воздушным зазором между газобетоном и кладкой.
При строительстве из газобетонных блоков встречаются ошибки, приводящая к избыточным расходам на отопление: образование мостиков холода. Чаще всего, это отсутствие или недостаточное утепление надпроемных железобетонных перемычек, железобетонных поясов, неоправданное применение железобетонных каркасов при строительстве малоэтажных домов из конструкционно-теплоизоляционных газобетонных блоков из-за недоверия к прочности материала.
Надпроемные перемычки в доме из газобетонных блоков : прежде всего, следует знать, что проемы шириной до 120 см над которыми высота кладки составляет не мене 2/3 ширины проема не нуждаются в перемычках, а лишь в горизонтальном армировании ряда над проемом. Проемы до 3 метров могут быть перекрыты монолитными железобетонными балками в несъемной опалубке из специальных U-образных газобетонных блоков, которые не нуждаются в дополнительном утеплении. Также не нуждаются в утеплении специальные газобетонные армированные балки, которыми можно перекрыть проемы до 174 см.
Однако в реальном строительстве чаще всего проемы перекрывают монолитными железобетонными балками, отливаемыми по месту. Такие балки требуют наружного утепления, которое иногда забывают утеплить.
Самые распространеннее на рынке марки газобетонных блоков имеют класс прочности на сжатие B2,5 и могут иметь плотность от D350 до D600. Из таких газобетонных блоков можно возводить несущие стены суммарной высотой до 20 м. Однако некоторые строители не доверяют прочности «легкого и пористого» материала и сооружают массивные хорошо проводящие холод железобетонные каркасы даже для двухэтажных конструкций.
Еще одна странная привычка отечественных строителей увеличивает теплопроводность кладки из газобетона: во многих случаях, строители не наносят клей на торцевые поверхности газобетонных блоков.
Между тем, во всех случаях исполнение вертикального шва должно предотвращать сквозное продувание стен. Вертикальные растворные швы при кладке блоков с плоскими гранями должны заполняться раствором полностью. При использовании блоков с профилированной поверхностью торцевых граней в кладке, к которой предъявляются требования к прочности на сдвиг в плоскости стены вертикальные швы должны заполняться по всей высоте и не менее чем на 40 % по ширине блока, а в иных случаях шов должен быть заполнен снаружи и изнутри полосами клея или раствора.
Кстати, недопустимо размазывать избыток клея или раствора по шву и поверхности блока: в этом случае уменьшается суммарная паропроницаемость кладки из газобетона. Избыток клея необходимо оставлять для подсыхания, и обрезать шпателем.
Кладка газобетонных блоков на цементный раствор формально не является строительной ошибкой. Однако следует знать, что кладка газобетонных блоков на цементном растворе на 25-30% лучше проводит тепло (толстые швы являются «мостиками холода»), и, следовательно, для достижения нормативного сопротивления теплопередачи такой стены, толщину кладки придется делать существенно больше, что сведет на нет «экономию» на клее для газобетона.
К этой группе относятся всевозможные самодеятельные «усовершенствования» технологии строительства домов из газобетонных блоков. Одной из самых распространенных, равно как и безобидных ошибок является желание «усилить» газобетонную кладку исполнением первых рядов из «более прочного» керамического кирпича. На самом же деле предельные деформации на излом и сдвиг у керамического кирпича и газобетонных блоков близкие, и таким образом невозможно уберечь стену от образования трещин при неправильно выполненном фундаменте или при отсутствии горизонтального конструктивного армирования.
Здания со стенами из кирпича или каменной кладки
3.10.1 В зависимости от типа усиления стены могут быть:
— из кирпичной (каменной) кладки;
— усиленные вертикальным армированием, предварительным напряжением или другими экспериментально обоснованными методами.
Комплексные конструкции выполняются устройством в кладке вертикальных железобетонных включений (сердечников) или применением трехслойных стен, внутренний слой которых из монолитного железобетона.
Каркасно-кирпичные (каркасно-каменные) стены предполагают усиление монолитными железобетонными колоннами с использованием кладки в качестве опалубки. Колонны совместно с горизонтальными монолитными или сборно-монолитными поясами образуют каркас с несущим заполнением из кладки.
3.10.2 Для кладки стен разрешается применять:
б) бетонные камни, полнотелые и пустотелые блоки из бетона (в том числе из бетона плотностью не менее 1200 кг/м 3 ) марки 50 и выше;
в) камни и блоки правильной формы из ракушечников или известняков марки не ниже 35 или
туфов (кроме фельзитового) и других природных материалов марки 50 и выше;
г) растворы марки не ниже 50 на основе цемента с пластификаторами и (или) специальными
добавками, повышающими сцепление раствора с кирпичом или камнем.
3.10.3 Каменная кладка должна иметь временное сопротивление осевому растяжению по непе-
ревязанным швам (нормальное сцепление) не ниже Rnt ≥120 кПа (1,2 кг/см 2 ).
В 7-балльных районах для малоэтажных зданий при расчетном обосновании допускается применение кладки с более низким временным сопротивлением осевому растяжению, но не менее 60 кПа (0,6 кг/см 2 ). При этом высота зданий должна быть не более трех этажей, ширина простенков не менее 0,9 м, ширина проемов не более 2 м, а расстояние между осями поперечных стен не более 12 м.
3.10.4 При проектировании значение Rnt следует назначать в зависимости от результатов испытаний, проводимых в районе строительства.
3.10.5 Проверка прочности каменных стеновых конструкций должна выполняться на вне-
центренное сжатие, срез и по наклонным сечениям в плоскости стены на главные растягивающие
напряжения. Значение расчетных сопротивлений кладки Rt, Rsq, Rtw по перевязанным швам следует
принимать согласно нормативным документам по проектированию каменных и армокаменных конструкций, а по неперевязанным швам определять в зависимости от величины Rnt, полученной в
результате испытаний, проводимых в районе строительства: Rt = 0,45 Rnt, Rsq = 0,7Rnt, Rtw = 0,8 Rnt.
Значения Rt, Rsq, Rtw не должны превышать соответствующих значений при разрушении кладки по кирпичу или камню.
3.10.6 Размеры элементов капитальных стен из кирпича и расстояния между ними должны
проверяться расчетом и удовлетворять требованиям, приведенным в таблице 3.2.
3.10.7 Внутреннюю продольную стену здания и крайние поперечные следует выполнять без
изломов.
3.10.8 Высота этажа зданий с несущими стенами из штучной кладки, не усиленных железобетонными включениями, не должна превышать при расчетной сейсмичности 7, 8 и 9 баллов
соответственно 5 м, 4 м и 3,2 м. При усилении кладки железобетонными включениями высоту этажа
допускается принимать соответственно 6 м, 5 м, 4,2 м.
Отношение высоты этажа к толщине стены должно быть не более 12.
3.10.9 В уровне перекрытий и покрытий, выполненных из сборных элементов, по всем стенам
без разрывов должны устраиваться антисейсмические пояса из монолитного железобетона с непрерывным армированием.
Плиты перекрытий (покрытий) должны соединяться с антисейсмическими поясами посредством анкеровки выпусков арматуры или сваркой закладных деталей. Антисейсмические пояса верхнего этажа должны быть связаны с кладкой вертикальными выпусками арматуры.
Необходимо устройство стержневых выпусков из кладки в железобетонный пояс, а также из пояса в вышележащую кладку при высоте пояса более 40 см, и устройство креплений мауэрлата и фронтонов.
В зданиях с монолитными железобетонными перекрытиями, заделанными по контуру в стены, в случае опирання монолитного перекрытия на всю толщину стены антисейсмические пояса в уровне этих перекрытий допускается не устраивать.
3.10.12 Участки стен над чердачным перекрытием, имеющие высоту более 40 см, а также фронтоны должны быть усилены вертикальным армированием или вертикальными железобетонными включениями, заанкеренными в антисейсмический пояс.
3.10.13 В стенах комплексной конструкции сердечники должны устраиваться в местах сопряжений стен, в оконных простенках, в местах обрамлений дверных проемов внутренних стен, на глухих участках стен с шагом, не превышающим высоту этажа. Сердечники должны соединяться с антисейсмическими поясами, анкериться с помощью сеток в прилегающей кладке и выполняться открытыми не менее чем с одной стороны. Если железобетонные включения выполняются по торцам простенков, то продольная арматура включений должна быть соединена хомутами, уложенными в горизонтальных швах кладки.
Внутренний железобетонный слой трехслойных стен должен иметь толщину не менее 100 мм и бетон класса не ниже В15. Внешние слои трехслойных стен связываются между собой горизонтальным армированием. Перекрытия и покрытия должны опираться на внутренний железобетонный слой стен.
3.10.14 В каркасно-каменных зданиях монолитные железобетонные колонны должны выполняться в сопряжениях стен сечением не менее 40 см×40 см, открытыми не менее чем с одной
стороны, из бетона класса не ниже В15. Расстояние между колоннами допускается не более 8 м.
Арматура колонн должна анкериться в поэтажных монолитных (сборно-монолитных) поясах и в
фундаментах. Сборно-монолитные пояса должны обеспечивать контакт кладки с монолитным бетоном не менее чем на 60 % от общей площади опирання пояса на кладку. Поперечное армирование
колонн выполняется по требованиям армирования колонн каркасных зданий.
3.10.15 В зданиях с несущими стенами первые этажи, используемые под помещения, требующие
большой свободной площади, следует выполнять из железобетонных или стальных конструкций.
3.10.16 Перемычки должны заделываться в кладку на глубину не менее 350 мм. При ширине
проема до 1,5 м допускается заделка перемычек на 250 мм.
3.10.17 Дверные и оконные проемы в каменных стенах лестничных клеток при расчетной
сейсмичности 8 и 9 баллов должны иметь железобетонное обрамление.
3.10.18 В зданиях на площадках сейсмичностью 9 баллов выходы из лестничных клеток следует устраивать на две стороны здания.