Определение сейсмичности строительной площадки
Введение
В районах подверженных сейсмическим воздействиям силой 7 и более баллов, возникла необходимость возведения зданий и сооружений, способных выдерживать сейсмические воздействия.
При разработке проектов зданий и сооружений выбор конструктивных решений производят исходя из технико-экономической целесообразности их применения в конкретных условиях строительства с учетом максимального снижения материалоемкости, трудоемкости и стоимости строительства, достигаемых за счет внедрения эффективных строительных материалов и конструкций, снижения массы конструкций и т.п. Принятые конструктивные схемы должны обеспечивать необходимую прочность, устойчивость; элементы сборных конструкций должны отвечать условиям механизированного изготовления на специальных предприятиях.
При проектировании гражданских зданий необходимо стремиться к наиболее простой форме в плане и избегать перепадов высот. При проектировании часто выбирают объемно-планировочные и конструктивные решения, так как они обеспечивают максимальную унификацию и сокращение числа типоразмеров и марок конструкций.
Увеличение объема капитального строительства при одновременном расширении области применения бетона и железобетона требует всемерного облегчения конструкций и, следовательно, постоянного совершенствования методов их расчета и конструирования
Компоновка конструктивного решения здания
Одноэтажное здание из сборного железобетона.
По рекомендациям п.1.2 [10] приняты: симметричная конструктивная схема (см. рис.1.1) с равномерным распределением жесткостей конструкций и масс; конструкции из легкого бетона на пористых заполнителях, обеспечивающие наименьшие значения сейсмических сил; условия работы конструкций с целесообразным перераспределением усилий вследствие использования неупругих деформаций бетона и арматуры при сохранении общей устойчивости здания.
Под колонны проектируем отдельные фундаменты стаканного типа
Размеры здания в плане 9×24м
Рассчитываемой несущей конструкцией является сборные железобетонные конструкции рамы
Покрытие совмещенное по сборным ребристым плитам 3 x 6 м.
Определение сейсмичности строительной площадки и сбор нагрузок
Определение сейсмичности строительной площадки
Определение сейсмичности площадки строительства производим на основании сейсмического микрорайонирования для II категории грунта по сейсмическим свойствам, грунтами которой являются: скальные грунты выветрелые и сильновыветрелые, в том числе вечномерзлые, кроме отнесенных к I категории; крупнообломочные грунты, за исключением отнесенных к I категории; пески гравелистые, крупные и средней крупности плотные и средней плотности маловлажные и влажные; пески мелкие и пылеватые плотные и средней плотности маловлажные; глинистые грунты с показателем консистенции IL 0,5 при коэффициенте пористости е 2 покрытия здания и перекрытия.
Вес фермы учитывается при определении ярусной нагрузки на стр.9.
Конструктивное решение пола принимаем одинаковым для всех этажей.
Сбор нагрузок производим в табличной форме и представлен в таблице 2.1
Оценка сейсмичности строительной площадки.
Строительство в сейсмических районах.
В среднем на Земле в год происходит более 20 сильнейших и 100 … 120 потенциально разрушительных землетрясений. По-гречески землетрясение – seimos, т.е. сейсмические явления связаны с колебаниями земной поверхности. Около 70 % землетрясений происходит на глубине до 60 км. В некоторых районах землетрясения происходят на глубине до 300 км и более.
Очагом землетрясений называют пространство, внутри которого заключены все сопровождающие землетрясения первичные деформации. Наблюдаемые на поверхности деформации и нарушения являются вторичными.
Интенсивность землетрясений оценивают в баллах. В последние годы в нашей стране используют международную шкалу MSK-64 (по начальным буквам фамилии ее создателя). Шкала MSK-64 подразделяет землетрясения на 12 баллов: I – IV баллов – слабые, V – VII баллов – сильные, VIII – XII баллов – разрушительные. Описательная часть шкалы состоит из трех разделов: 1) степень повреждения сооружений, выполненных без антисейсмических мер; 2) остаточные явления в грунтах и изменения в режиме грунтовых вод; 3) прочие признаки, включая реакции людей на землетрясения.
Мерой интенсивности землетрясения служит магнитуда – величина, пропорциональная выделенной в очаге землетрясения энергии, равной десятичному логарифму амплитуды наибольшего колебания грунта по отношению к некоторому стандартному колебанию. Шкала магнитуд (от 0 до 8,7 баллов) разработана Ч. Рихтером. Разница магнитуд на единицу соответствует различию энергии землетрясений в 30 раз. Магнитуда определяется через амплитуду m α поверхностной волны и расстоянием R до эпицентра землетрясения:
M = lg α m +1,32 lg R
Для сильных землетрясений а = 1,5; b = 11,8; для слабых а = 1,8; b = 11.
Длина разрыва на поверхности земли связана с магнитной формулой
Сейсмически опасные районы разделяют на зоны с одинаковым сейсмическим воздействием, составлены карты сейсмического районирования. Расчет и проектирование сооружений производят на особые сочетания нагрузок с учетом сейсмических воздействий, представляемых инструментальными записями ускорений и синтезированными акселерограммами. Для анализа поведения конструкций при сейсмических воздействиях производят статическое моделирование и оценку показателей риска.
Последствия землетрясений оценивают по шкале Бюро МСССС (1973), согласно которой здания классифицируют по трем типам:
А – здания из рваного камня, сельские постройки;
Б – кирпичные крупноблочные дома, здания из естественного тесаного камня;
В – здания панельные, каркасные железобетонные и деревянные хорошей постройки.
Различают: легкие, умеренные и тяжелые повреждения, разрушения и обвалы.
Причиной землетрясений является следующее: земная кора толщиной 30 … 60 км расчленена на блоки разного объема и формы. Блоки (платформы) перемещаются в пространстве с разной скоростью. Это создает условия для перераспределения и периодической концентрации напряжений в граничных областях – разломах. Накопление и разрядка энергии вызывает разрыв и смещения соседних блоков, что и порождает сейсмические волны и колебания.
Составлены карты распределения сейсмической энергии. Для каждого района определена максимальная величина интенсивности и разработаны карты сейсмического районирования и микрорайонирования. На картах указаны не только максимальные интенсивности, но и категории повторяемости. Для первой категории – раз в 100 лет, второй – в 1000 лет, третьей – в 10 000 лет. Срок службы сооружений, в среднем, значительно меньше промежутков между землетрясениями максимальной для данного района интенсивности.
Замкнутые линии, соединяющие землетрясения одинаковой интенсивности называют изосейстами. На территории страны имеются службы сейсмического наблюдения и инженерно-сейсмометрическая. Приборы, фиксирующие параметры колебаний, находятся в ждущем режиме. Строятся графики смещений – сейсмограммы, скоростей – велосиграммы, ускорения – акселерограммы.
Сейсмическое микрорайонирование включает:
• сбор, анализ и обобщение данных предшествующих землетрясений;
• инженерно-геологические и макросейсмические исследования; инструментальные инженерно-сейсмологические и другие геофизические исследования;
• комплексную интерпретацию полученных данных; составление карты сейсмического микрорайонирования.
Точно предсказать величину и характер сейсмических воздействий невозможно. Землетрясения меньшей интенсивности возникают чаще. Они не вызывают серьезных повреждений, но являются причиной постепенного накопления дефектов, снижающих сейсмостойкость. До землетрясения в конструкциях существует напряженное состояние, вызванное действием собственного веса, полезных нагрузок, неравномерных осадок, температурных напряжений. Сейсмические нагрузки могут действовать в любом направлении, вызывая в разные моменты времени напряжения одних или разных знаков.
Исследования сейсмостойкости строительных материалов осуществляют в экспериментах на циклическое нагружение двух типов. При первом (мягком) выдерживают постоянными амплитуды нагрузок, а деформации меняются от цикла к циклу. При втором (жестком) нагружении оставляют постоянными амплитуды деформаций (перемещений), а меняют амплитуды напряжений.
Основными параметрами испытаний являются: число циклов, уровень нагрузки, период цикла, коэффициент асимметрии цикла.
Отношение динамического предела прочности Rd к статическому R прямолинейно уменьшается с ростом lgN (N – число циклов нагружения). Опыты показали, что чем большая работа затрачивается в первых циклах загружения, тем при меньшем числе циклов можно ожидать разрушения; чем большими возможностями пластического деформирования обладают конструкции, тем менее опасными для них оказываются отдельные перегрузки. Наличие концентраторов напряжений (отверстий, надрезов, трещин, резких изменений размеров элементов) приводит к значительному снижению пределов циклической прочности. Часто опыты проводят в режиме статических знакопеременных изменений нагрузки или перемещений. При постоянных амплитудах перемещений отмечено постепенное «размягчение» материала – снижение максимальной нагрузки, соответствующей одной и той же амплитуде изменений. При проектировании сейсмические воздействия учитывают в районах с интенсивностью 7, 8 и 9 баллов. Сейсмичность площадки строительства корректируют в зависимости от вида и состояния грунтов К первой категории относят: скальные грунты всех видов; крупнообломочные; вечномерзлые при температуре –2 °С и ниже, при строительстве и эксплуатации по принципу сохранения грунтов основания в мерзлом состоянии (принцип I).
Ко второй категории относят: скальные грунты выветрелые; пески гравелистые крупные и средней крупности, плотные и средней плотности, маловлажные и влажные; глинистые грунты с показателем консистенции IL ≤ 0,5 при коэффициенте пористости е
Дата добавления: 2017-01-13 ; просмотров: 1295 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ
Сейсмичность площадки строительства что это
СТРОИТЕЛЬСТВО В СЕЙСМИЧЕСКИХ РАЙОНАХ
Seismic Building Design Code
____________________________________________________________________
Текст Сравнения СП 14.13330.2014 с СП 14.13330.2011 см. по ссылке;
Текст Сравнения СП 14.13330.2011 со СНиП II-7-81* см. по ссылке.
— Примечание изготовителя базы данных.
____________________________________________________________________
Дата введения 2011-05-20
2 ВНЕСЕН Техническим комитетом по стандартизации ТК 465 «Строительство»
3 ПОДГОТОВЛЕН к утверждению Департаментом архитектуры, строительства и градостроительной политики
Опечатка внесена изготовителем базы данных
Введение
1 Область применения
Настоящий свод правил распространяется на область проектирования зданий и сооружений, возводимых в районах сейсмичностью 7, 8 и 9 баллов.
На площадках, сейсмичность которых превышает 9 баллов, возводить здания и сооружения, как правило, не допускается. При необходимости строительство на таких площадках допускается при обязательном научном сопровождении и участии специализированной научно-исследовательской организации.
Настоящий свод правил устанавливает требования по расчету с учетом сейсмических нагрузок, по объемно-планировочным решениям и конструированию элементов и их соединений зданий и сооружений, обеспечивающие их сейсмостойкость.
2 Нормативные ссылки
3 Термины и определения
В данном документе использованы термины, определения которых приведены в приложении А.
4 Основные положения
4.2 Проектирование зданий высотой более 75 м и сооружений с пролетами более 50 м должно осуществляться при научном сопровождении и участии специализированных научно-исследовательских организаций.
Категория грунта по сейсми-
ческим свойствам
Дополнительная информация о скоростях сейсмических волн
Сейсмичность площадки строительства при сейсмичности района, баллы
Отношение скоростей продольных и поперечных волн
Скальные грунты всех видов (в том числе вечномерзлые и вечномерзлые оттаявшие) невыветрелые и слабовыветрелые: крупнообломочные грунты плотные маловлажные из магматических пород, содержащие до 30% песчано-глинистого заполнителя: выветрелые и сильновыветрелые скальные и нескальные твердомерзлые (вечномерзлые) грунты при температуре минус 2 °С и ниже при строительстве и эксплуатации по принципу I (сохранение грунтов основания в мерзлом состоянии)
1,45-2,2 для неводонасыщенных
2,2-3,5 для водонасыщенных
Решение о выборе карты для оценки сейсмичности площадки при проектировании конкретного объекта принимается заказчиком по представлению генерального проектировщика, при необходимости основываясь на заключениях специализированной научно-исследовательской организации, за исключением случаев, оговоренных в других нормативных документах.
4.4 Количественную оценку сейсмичности площадки строительства с учетом грунтовых и гидрогеологических условий следует проводить на основании сейсмического микрорайонирования, которое является составной частью инженерных изысканий и выполняется с соблюдением требований соответствующих нормативных документов.
На площадках строительства, где не проводилось сейсмическое микрорайонирование, в виде исключения допускается определять сейсмичность согласно таблице 1.
4.5 Площадки строительства, расположенные вблизи плоскостей тектонических разломов, с крутизной склонов более 15°, нарушением пород физико-геологическими процессами, просадочными и набухающими грунтами, осыпями, обвалами, плывунами, оползнями, карстом, горными выработками, селями являются неблагоприятными в сейсмическом отношении.
При необходимости строительства зданий и сооружений на таких площадках следует принимать дополнительные меры к укреплению их оснований и усилению конструкций.
4.7 С целью получения достоверной информации о работе конструкций при интенсивных землетрясениях и колебаниях прилегающих к зданиям и сооружениям грунтов в проектах зданий и сооружений повышенного уровня ответственности, перечисленных в графе 1 таблицы 3, следует предусматривать установку станций наблюдений за динамическим поведением конструкций и прилегающих грунтов.
5 Расчетные нагрузки
5.1 Расчет конструкций и оснований зданий и сооружений, проектируемых для строительства в сейсмических районах, должен выполняться на основные и особые сочетания нагрузок с учетом сейсмических воздействий, соответствующих картам ОСР-97 (А, В и С).
При расчете зданий и сооружений (кроме транспортных и гидротехнических) на особое сочетание нагрузок значения расчетных нагрузок следует умножать на коэффициенты сочетаний, принимаемые по таблице 2. Нагрузки, соответствующие сейсмическому воздействию, следует рассматривать как знакопеременные нагрузки.
Кратковременные (на перекрытия и покрытия)
Горизонтальные нагрузки от масс на гибких подвесках, температурные климатические воздействия, ветровые нагрузки, динамические воздействия от оборудования и транспорта, тормозные и боковые усилия от движения кранов при этом не учитываются.
При определении расчетной вертикальной сейсмической нагрузки следует учитывать массу моста крана, массу тележки, а также массу груза, равного грузоподъемности крана, с коэффициентом 0,3.
Расчетную горизонтальную сейсмическую нагрузку от массы мостов кранов следует учитывать в направлении, перпендикулярном к оси подкрановых балок. Снижение крановых нагрузок, предусмотренное СП 20.13330, при этом не учитывается.
5.2 При выполнении расчетов сооружений с учетом сейсмических воздействий следует использовать две расчетные ситуации:
а) сейсмические нагрузки соответствуют уровню ПЗ (проектное землетрясение). Целью расчетов на воздействие ПЗ является предотвращение частичной или полной потери эксплуатационных свойств сооружением. Расчетные модели сооружений следует принимать соответствующими упругой области деформирования. Расчеты зданий и сооружений на особые сочетания нагрузок следует выполнять на нагрузки, определяемые в соответствии с 5.5, 5.9, 5.10;
5.2.1 Расчеты по 5.2, а) (уровень нагрузки, отвечающий ПЗ) следует выполнять для всех зданий и сооружений. Расчеты по 5.2, б), с использованием уровня сейсмической нагрузки МРЗ, следует применять для зданий и сооружений, перечисленных в позициях 1 и 2 таблицы 3.
5.2.2 Целью расчетов на воздействие МРЗ является предотвращение глобального обрушения сооружения или его частей, создающего угрозу безопасности людей. Расчеты, соответствующие МРЗ, следует выполнять во временной области с использованием инструментальных или синтезированных акселерограмм. В расчетах на МРЗ следует осуществлять проверку несущей способности конструкций, включая общую устойчивость сооружения или его частей, при максимальных горизонтальных перемещениях, с учетом вертикальной составляющей сейсмических ускорений.
При выполнении расчета в частотной области суммарные усилия, соответствующие сейсмическому воздействию, допускается вычислять по формуле (8).
В расчетах с учетом нагрузок, соответствующих МРЗ, во временной области следует принимать коэффициент 1.
а) первая и вторая формы собственных колебаний сооружения не являются крутильными относительно вертикальной оси;
б) максимальное и среднее значения горизонтальных смещений каждого перекрытия по любой из поступательных форм собственных колебаний сооружения различаются не более чем на 10%;
в) значения периодов всех учитываемых форм собственных колебаний должны отличаться друг от друга не менее чем на 10%;
г) соответствует требованиям 4.3;
д) соответствует требованиям таблицы 8;
е) в перекрытиях отсутствуют большие проемы, ослабляющие диски перекрытий.
5.4 Вертикальную сейсмическую нагрузку необходимо учитывать совместно с горизонтальной при расчете:
горизонтальных и наклонных консольных конструкций;
пролетных строений мостов;
рам, арок, ферм, пространственных покрытий зданий и сооружений пролетом 24 м и более;
сооружений на устойчивость против опрокидывания или против скольжения;
каменных конструкций (по 6.14.4).
5.5 При определении расчетных сейсмических нагрузок на здания и сооружения следует принимать расчетные динамические модели конструкций (РДМ), согласованные с расчетными статическими моделями конструкций и учитывающие особенности распределения нагрузок, масс и жесткостей зданий и сооружений в плане и по высоте, а также пространственный характер деформирования конструкций при сейсмических воздействиях.
Массы (вес) нагрузок и элементов конструкций в РДМ допускается принимать сосредоточенными в узлах расчетных схем. При вычислении массы необходимо учитывать только нагрузки, создающие инерционные силы.
Для зданий и сооружений с простым конструктивно-планировочным решением для расчетной ситуации ПЗ расчетные сейсмические нагрузки допускается определять с использованием консольной расчетной динамической модели (рисунок 1). Для таких зданий и сооружений при расчетной ситуации МРЗ необходимо использовать пространственные расчетные динамические модели конструкций и учитывать пространственный характер сейсмических воздействий.
1 При сейсмичности площадки 8 баллов и более, повышенной только в связи с наличием грунтов категории III, к значению вводится множитель 0,7, учитывающий нелинейное деформирование грунтов при сейсмических воздействиях.
2 Обобщенная координата может быть линейной координатой, и тогда ей соответствует линейная масса, либо угловой, и тогда ей соответствует момент инерции массы. Для пространственной РДМ для каждого узла обычно рассматривается 6 обобщенных координат: три линейные и три угловые. При этом, как правило, считают, что массы, соответствующие линейным обобщенным координатам, одинаковы, а моменты инерции массы относительно угловых обобщенных координат могут быть различными.
Назначение сооружения или здания
1 Монументальные здания и другие сооружения; крупные театры, дворцы спорта и концертные залы с одновременным пребыванием в них более 2000 человек, правительственные здания повышенной ответственности, радиостанции с общей мощностью передатчиков в одном здании более 500 Вт
2 Здания и сооружения:
функционирование которых необходимо при землетрясении и ликвидации его последствий (здания правительственной связи; службы МЧС и полиции; системы энерго- и водоснабжения; сооружения пожаротушения, газоснабжения; сооружения, содержащие большое количество токсичных или взрывчатых веществ, которые могут быть опасными для населения; медицинские учреждения, имеющие оборудование для использования в аварийных ситуациях);
в которых возникает опасность для находящихся в них людей (больницы, школы, дошкольные учреждения, вокзалы, аэропорты, музеи, театры, цирки, концертные и спортивные залы, крытые рынки, торговые комплексы с одновременным пребыванием в них более 300 человек, многоэтажные здания высотой более 16 этажей);
другие здания и сооружения, отказы которых могут привести к тяжелым экономическим, социальным и экологическим последствиям
3 Другие здания и сооружения, не указанные в 1 и 2
4 Временные постройки со сроком эксплуатации до 3 лет
Примечания
1 Отнесение сооружения к назначению сооружения или здания производится заказчиком по представлению генпроектировщика.
2 Идентификация зданий и сооружений по принадлежности к опасным производственным объектам проводится в соответствии с законодательством Российской Федерации в области промышленной безопасности.
3 При расчете сооружений с использованием расчетных моделей сейсмических воздействий, например в виде инструментальных или синтезированных акселерограмм, максимальные амплитуды ускорений основания следует принимать не менее 100, 200 или 400 см/с при сейсмичности площадок строительства 7, 8 и 9 баллов соответственно и умножать на коэффициент (1 и 2 таблицы 3).
Для грунтов категорий I и II по сейсмическим свойствам (кривая 1) при:
Для грунтов категории III по сейсмическим свойствам (кривая 2) при:
Во всех случаях значения должны приниматься не менее 0,8.
Примечания
Интенсивность (в баллах MSK) на картах ОСР-97