В КАКИХ СЛУЧАЯХ ПРИМЕНЯЮТ ШАРНИРНО-ПОДВИЖНЫЕ ОПОРЫ?
Применяют в пролётных строениях мостов, которые эксплуатируют на открытом воздухе и у которых отсутствие подвижных опор вызовет большие внутренние температурные напряжения в сечениях (в дополнение к напряжениям от усадки и ползучести). Кроме того, по условиям статического расчета шарнирно-подвижные опоры применяют в контурных элементах тонкостенных оболочек и в ряде других пространственных конструкций.
Для конструкций покрытий и перекрытий массового назначения применяют обычные шарнирно-неподвижные опоры (рис.89,в), ибо только они в состоянии обеспечить передачу горизонтальных нагрузок на смежные стойки рам (или смежные стены) и создать жесткий горизонтальный диск покрытия или перекрытия. Неподвижные опоры хотя и вызывают распор, но распор не опасный, а для изгибаемых элементов даже полезный, т.к. он несколько уменьшает значения моментов в пролете.
КАК ВЫПОЛНЯЮТ ЖЕСТКОЕ СОПРЯЖЕНИЕ МОНОЛИТНЫХ ЭЛЕМЕНТОВ?
Рис. 90 (*расчетное сечение) | При жестком сопряжении угол между элементами остается неизменным, а примыкающие к узлу нормальные сечения должны быть в состоянии воспринимать изгибающие (узловые) моменты Мо. В монолитных конструкциях такой узел сложности не представляет: следует лишь надежно заанкерить рабочую арматуру в узле (особенно, растянутую), учитывая, что размеры самого узла зачастую весьма ограниченны. Если размеры узла lx меньше длины зоны анкеровки lan, применяют известные конструктивные приёмы (см. вопрос 21): устраивают концевые анкера в виде коротышей или анкерных головок, загибают концы стержней «в лапу» (рис. 90,а) и т.п. Если позволяют условия, |
то в узлах целесообразно устраивать вуты, т.е. уширения (рис. 90,б), которые увеличивают жесткость самих узлов и несколько уменьшают изгибающие моменты в расчетных сечениях (точнее сказать, передвигают опасные сечения в сторону меньших значений моментов).
КАК АРМИРУЮТ ВНУТРЕННИЕ (ВХОДЯЩИЕ) УГЛЫ ЖЕСТКО СОПРЯГАЕМЫХ ЭЛЕМЕНТОВ?
Здесь надо учитывать знак изгибающего момента. Если момент растягивает внутренние грани или его знак может меняться, то при армировании гнутыми стержнями появляется равнодействующая сила N, которая стремится выпрямить эти стержни и оторвать защитный слой бетона, что приведёт к разрушению узла (рис. 91,а). Поэтому в местах перегиба стержней их заанкеривают скобами (поз.1 на рис. 91,б), воспринимающими силу N, или применяют не связанные между собой прямые пересекающиеся стержни, заанкеривая их в бетоне с помощью анкерных головок (поз. 2 на рис. 91,в), коротышей или другим способом (см. вопрос 21).
ЧТО ТАКОЕ ВЫПУСКИ АРМАТУРЫ?
Это концы арматурных стержней, выходящие наружу из тела бетона. Чтобы обеспечить передачу усилия, выпуски обычно сваривают между собой ванной сваркой (реже дуговой сваркой с накладками), а затем обетонируют. Такой способ применяют, например, в жёстком стыке колонн, показанном на рис.92 (где поз.1 – выпуски арматуры, 2 – ванная сварка, 3 – монолитный бетон), в жёстком соединении ригелей с колоннами (см. вопрос 183 и рис. 93) и во многих других случаях. Выпуски устраивают и в монолитном железобетоне, когда требуется наращивать арматуру по мере бетонирования массивной или протяженной конструкции.
ПроСопромат.ру
Технический портал, посвященный Сопромату и истории его создания
Опорные устройства балочных систем
В машинах и сооружениях очень часто встречаются тела удлиненной формы, называемые балками (или балочными системами). Балки в основном предназначены для восприятия поперечных нагрузок. Балочные системы имеют специальные опорные устройства для сопряжения их с другими элементами и передачи на них усилий.
Различают следующие типы опор.
Шарнирно-подвижная опора (рис.а).
Шарнирно- подвижная опора
Такая опора допускает поворот вокруг оси шарнира и линейное перемещение параллельно опорной плоскости. В этой опоре известны точка приложения опорной реакции — центр шарнира и ее направление — нормаль к опорной поверхности (трением катков пренебрегают).
Таким образом, здесь остается одна неизвестная — опорная реакция RА.
Схематические изображения шарнирно подвижных опор приведены на рис. б—г. Следует отметить, что опорная поверхность шарнирно подвижной опоры может быть непараллельна оси балки (рис. г). Реакция RА в этом случае не будет перпендикулярна оси балки, так как она перпендикулярна опорной поверхности.
Шарнирно-неподвижная опора (рис. а).
Эта опора допускает поворот вокруг оси шарнира, но не допускает никаких линейных перемещений. В данном случае известна только точка приложения опорной реакции — центр шарнира; направление и величина опорной реакции неизвестны. Обычно вместо определения величины и направления реакции (полной) находят ее горизонтальную и вертикальную составляющие VА и HА.
Схематические изображения шарнирно-неподвижных опор приведены на рис. б-г.
Жесткая заделка (защемление)
Жесткая заделка (защемление)
Такая опора не допускает ни линейных перемещений, ни поворота.
Неизвестными в данном случае являются не только величина и направление реакции, но и точка ее приложения. Таким образом, для определения опорной реакции следует найти три неизвестных: составляющие VА и HА опорной реакции по осям координат и реактивный момент mА относительно центра тяжести опорного сечения.
Опорные реакции можно также обозначать буквами, соответствующими координатным осям, вдоль которых онн направлены, с индексом, отвечающим опоре. Например, YА и XА или просто буквами А и В и т. п.
Виды нагрузок и разновидности опор
Виды нагрузок
По способу приложения нагрузки делятся на
Если реально передача нагрузки происходит на пренебрежимо малой площадке (в точке), нагрузку называют сосредоточенной.
Часто нагрузка распределена по значительной площадке или линии (давление воды на плотину, давление снега на крышу и т.п.), тогда нагрузку считают распределенной.
В задачах статики для абсолютно твердых тел распределенную нагрузку можно заменить равнодействующей сосредоточенной силой (рис. 6.1).
q — интенсивность нагрузки; I — длина стержня;
G = ql — равнодействующая распределенной нагрузки.
Разновидности опор балочных систем (см. лекцию 1)
Балка — конструктивная деталь в виде прямого бруса, закрепленная на опорах и изгибаемая приложенными к ней силами.
Высота сечения балки незначительна по сравнению с длиной.
Жесткая заделка (защемление) (рис. 6.2)

Для определения этих неизвестных удобно использовать систему уравнений в виде
Каждое уравнение имеет одну неизвестную величину и решается без подстановок.
Для контроля правильности решений используют дополнительное уравнение моментов относительно любой точки на балке, например
Шарнирно-подвижная опора (рис. 6.3)
Опора допускает поворот вокруг шарнира и перемещение вдоль опорной поверхности. Реакция направлена перпендикулярно опорной поверхности.
Шарнирно-неподвижная опора (рис. 6.4)
Опора допускает поворот вокруг шарнира и может быть заменена двумя составляющими силы вдоль осей координат.
Балка на двух шарнирных опорах (рис. 6.5)
![]() |
Не известны три силы, две из них — вертикальные, следовательно, удобнее для определения неизвестных использовать систему уравнений во второй форме:
Составляются уравнения моментов относительно точек крепления балки. Поскольку момент силы, проходящей через точку крепления, равен 0, в уравнении останется одна неизвестная сила.
Для контроля правильности решения используется дополнительное уравнение
При равновесии твердого тела, где можно выбрать три точки, не лежащие на одной прямой, удобно использовать систему уравнений в третьей форме (рис. 6.6):

Рис. 90 (*расчетное сечение)










