Строительство адронного коллайдера в россии

Почему коллайдер, который начали строить в СССР в восьмидесятых годах, так и не закончили?

В ста километрах от Москвы, в лесах, под землю буквально зарыт клад. Речь не о сундуках с золотом и драгоценными камнями. Рядом с Москвой на глубине 60 метров покоится настоящий адронный коллайдер.

Этот проект должен был стать вершиной научной революции 80 годов. Небольшой научный городок Протвино, расположенный рядом с коллайдером, стал бы центром притяжения мировой науки. Однако ускоритель частиц так ни разу и не запустили.

Почему строительство крупнейшего в мире адронного коллайдера остановили, а проект заморозили? Фактрум собрал самые интересные факты о советском ускорителе частиц.

Самый большой коллайдер в России и в мире

Судьба у советского коллайдера сложная. Его то начинали активно строить, то почти полностью забрасывали. Самые глубокие тоннели ускорителя удалены от поверхности на 60 метров. По общей протяжённости коллайдер не уступает кольцевой линии московского метро. И вся эта огромная махина, спрятанная в лесах Подмосковья, не закончена.

Сам город Протвино появился в 1965 году. До этого на его месте существовал закрытый научный посёлок Серпухов-7. Учёные, которые жили в закрытом городе, работали на действующем тогда протонном синхротроне. Этот ускоритель по задумке учёных должен был стать частью огромного советского коллайдера. Место для строительства синхротрона и коллайдера было выбрано не случайно. Эта часть Подмосковья раньше была дном моря, что делало грунт недосягаемым для сейсмическим толчков.

Адронный коллайдер в СССР: взлёты и падения

В начале восьмидесятых, когда на реализацию проекта дали добро, в мире не существовало аналогов. Мощности американского Тэватрона и швейцарского суперколлайдера были значительно ниже. В 1983 году появились первые вертикальные шахты для бурения тоннелей. Однако бурить твёрдую породу — неблагодарное дело. Работы шли вяло, за несколько лет машины «прогрызли» лишь полтора километра породы. В 1988 году СССР выделил дополнительные средства на покупку зарубежных бурильных установок. Машины не только создавали тоннели, но и выстилали дно бетонными «подушками» с металлоизоляцией. Работы ускорились.

Строительство одного из тоннелей коллайдера

В 1988 году основной кольцевой тоннель был готов на 70%, канал инжекции (для перевода ускоренных частиц из синхротрона в коллайдер) — на 95%. На земле выросло более 20 специальных площадок для размещения инженерных коммуникаций. Казалось бы, до светлого будущего оставался последний рывок. Но финансирование вновь прекратилось. В 1991 году бюджет проекта урезали, а во время кризиса в 1998 году деньги вообще почти иссякли. Просто бросить недостроенный объект значило бы обречь Подмосковье на экологическую катастрофу. Началась консервация.

Оставшуюся треть тоннеля строили четыре года. Однако запустить коллайдер после этого было невозможно. Тоннели не имели достаточного количества магнитной «обшивки», которая создаёт поле и разгоняет частицы. При этом канал инжекции был полностью закончен. Кроме того, завершилось строительство инженерных залов и установка нейтринного телескопа на озере Байкал, который должен был «ловить» частицы.

Бесславный конец заброшенного ускорителя элементарных частиц

Сегодня на содержание советского коллайдера тратятся миллионы. Ежегодно необходимо откачивать воду из тоннелей, укреплять стенки и бетонировать сталкерские ходы. Большой адронный коллайдер, который запустили в 2008 году, поставил крест на идее возрождения русского ускорителя. Более того, в России уже ведётся строительство более современного (хотя и менее крупного) коллайдера НИКА в подмосковной Дубне.

Тоннели в их нынешнем состоянии

Содержать советский коллайдер «вхолостую» крайне затратно. Из-за этого активно рассматриваются идеи по реновации проекта. Самое перспективное направление — создание на базе ускорителя огромного аккумулятора-накопителя. Такая «батарейка» разгрузит электрические сети Москвы. Но все идеи требуют немалого финансирования, которое и является камнем преткновения. Даже просто залить советский коллайдер бетоном — дорогое удовольствие.

Источник

В подмосковную Дубну доставлен магнит, который станет сердцем нового российского коллайдера

Сегодня Дубна осталась без электроснабжения. Но это не результат стихийного бедствия, а тщательно спланированная операция, к которой жители города оказались готовы, и более того, ждали ее с нетерпением. Высоковольтные провода пришлось убирать с маршрута следования 125-тонного магнита. Строительство уникального сооружения уже заканчивается, и совсем скоро ученые с его помощью попробуют заглянуть в истоки мироздания.

Мимо дачных участков и дубнинских лесных опушек проезжает груз стоимостью 15 миллионов евро. В огромном 120-тонном контейнере — сверхпроводящая катушка магнита для нового российского коллайдера NICA.

Аккуратно, медленнее, чем скорость шага, провозят ценный научный груз. Магнит очень чувствителен к колебаниям, поэтому не должно быть ни малейшей тряски. Не просто транспортировка — целая спецоперация. Шоковые датчики внутри контейнера показывают, все ли в порядке во время перевозки.

Заранее перекрыты улицы. Большую часть Дубны обесточили. По пути следования научного груза есть участки с линиями электропередач. Провода поднимают с помощью крана.

Многие жители города приехали сюда только для того, чтобы посмотреть на эту громадину. И, кажется, в наукограде никому не надо объяснять, что же это такое и для чего. Знают и взрослые, и дети.

— Знаем, что это сверхпроводящий магнит для ускорителя, знаем, что собирали его в Италии.

— Чтобы ускорять частицы сталкивать и смотреть, что получится.

Магнит изготовили в Италии по проекту российских ученых. Из-за размеров и хрупкости доставка только водным путем. Сначала морем, потом Нева и Волга и по Каналу имени Москвы. В порту саркофаг встречали ученые из Дубнинского Объединенного института ядерных исследований.

«Конструкция магнита позволит достичь очень высокой однородности этого магнитного поля, такой, какой не достигалось ни в одних известных на сегодня магнитах. Это очень сложная конструкция, требующая высокой точности», — поясняет директор Лаборатории физики высоких энергий им. В.И. Векслера и А. М. Балдина Владимир Кекелидзе.

Катушка магнита — это самая большая неразборная часть будущего коллайдера NICA. Она — сердце одного из детекторов, которые и будут анализировать данные экспериментов. Тяжелые частицы ионов разгоняются и с огромной скоростью сталкиваются. Таким образом можно прикоснуться к тайнам нашей Вселенной. По сути, ученые откроют такие явления, для которых просто еще нет научной теории. Например, можно получить вещество из самого сердца нейтронных звезд.

«Нейтронные звезды находятся, конечно, очень далеко, мы не можем слетать туда и потрогать их. Мы можем изучить их, лишь когда нам выпадет такая возможность. В NICA мы можем изучить их подробно», — говорит профессор Варшавского политехнического университета Адама Кисель.

На месте строительства коллайдера NICA уже тонны комплектующих для детекторов. В скором времени здесь приступят к сборке магнита. Итальянскую катушку установят в гигантское магнитное ярмо.

«Это самая важнейшая часть. После этого мы будем стремиться точно выставить все элементы этого криостата для того, чтобы достигнуть возможности провести испытания и убедиться в однородности магнитного поля, которое является важнейшим элементом чувствительности детектора», — поясняет директор Объединенного института ядерных исследований Виктор Матвеев.

Уже в 2022 году должны начаться первые эксперименты. Помимо фундаментальной науки, ожидается, что коллайдер послужит для огромного количества прикладных дисциплин. Например, в медицине. Исследования помогут в лечении раковых опухолей пучками направленных частиц. А для космической отрасли — изучение воздействия радиации на приборы. Это поможет сделать ближе возможность полетов к дальним планетам.

Источник

Чёрные дыры в Сибири и под Москвой? Зачем Россия запускает новые коллайдеры

Фото © Sean Gallup / Getty Images

» src=»https://static.life.ru/posts/2019/07/1226971/gr/north/ac0006fb9a537219385e501564af51dc__1920x.jpg» loading=»lazy» style=»width:100%;height:100%;object-fit:cover»/>

И раз уж нас так непреодолимо тянет в этот тёмный лес, давайте сразу: во-первых, «коллайдеры», потому что частицы в них collide — «сталкиваются», а «адронные» (и уж никак не «андронные») — потому как сталкиваются адроны, это такие частицы. Хотя наши отечественные коллайдеры называют по-другому, например электрон-позитронными, чтобы обозначить, что, собственно, они там сталкивают. Потому что получается из этого столько всего, что ни в сказке сказать, ни в статье описать.

Сталкивают, стало быть, электроны и позитроны. Электроны ладно, знаем, по физике проходили. А позитроны — это те же электроны, только с положительным зарядом. Так тоже бывает. Но это уже вообще-то не совсем частица. Это АНТИчастица. То есть мы с вами имеем дело с антиматерией, и не в кино, а в реальной жизни. Да, кстати, насчёт создания в коллайдере бомбы на антиматерии и прочих апокалипсических сценариев:

Это полная чушь, антивещества в коллайдере для этого слишком мало, столько же античастиц встречается и в естественной среде вокруг нас с вами. Вот пока мы разговариваем, сквозь нас пролетели несколько частиц и античастиц

Владимир Кекелидзе, руководитель проекта коллайдера NICA

Какие в России коллайдеры

Итак, в России на сей момент работает более десятка ускорителей частиц. Три из них находятся в Новосибирске, это ВЭПП-4, ВЭПП-2000 и построенный (правда, не полностью) в 2015 году ВЭПП-5. ВЭПП означает «встречные электрон-позитронные пучки». Недавно эти пучки там встретились так удачно, что породили особо редкие частицы под названием пионы, или пи-мезоны. Семь штук. Каждый состоит из кварка и, как бы помягче сказать, антикварка. И учёным очень любопытно, как же именно возникает это необычное сочетание. А покопаться в этом до сих пор не удавалось просто потому, что не получалось сделать такой мощный выстрел частицами.

Пока это очень небольшой вклад в науку и понимание общей картины мира, но, с другой стороны, показывает наши возможности

Евгений Солодов, главный научный сотрудник ИЯФ СО РАН

А в подмосковной Дубне вот-вот достроят ещё один коллайдер, причём обещают, что кое в чём он превзойдёт по своим возможностям сам БАК — Большой адронный. Называется он NICA, расшифровывается так: Nuclotron-based Ion Collider fAcility. В переводе это означает, что в нём будут ударяться друг в друга ионы, а разгонять их будут в установке «Нуклотрон» — это ускоритель в виде 250-метрового кольца. Так что это будет коллайдер тяжёлых ионов. Сразу возникает ещё один вопрос чайника: для чего нам столько коллайдеров, хороших и разных?

Коллайдер — это инструмент. А инструментов должно быть много, у каждого своя задача. Задача нашего коллайдера — изучение плотной ядерной материи в таких экстремальных условиях, в которых она бывает разве что в ядрах нейтронных звёзд

Владимир Кекелидзе, руководитель проекта коллайдера NICA

Это выдумки необразованных журналистов. Они возникли из-за каких-то теоретических инсинуаций. Если бы что-то такое было, оно бы давно случилось

Евгений Солодов, главный научный сотрудник ИЯФ СО РАН

Схема работы коллайдера NICA, строящегося в Дубне. Фото © NICA

Так, значит, бомбы не будет, чёрной дыры не будет. А что будет? Примерно то, что было во Вселенной вскоре после Большого взрыва. Чтоб вы знали, из-за вопроса о том, как всё случилось тогда, в самом начале, к прогрессивному человечеству по ночам сон не идёт. И ещё: частицы, которые мчатся там, внутри, — те самые, из которых состоит всё, включая нас с вами. Только вот как у них там всё устроено, пока что не очень понятно.

Первый сверхпроводящий синхротрон с тяжёлыми ионами. Фото © NICA

Ядерные силы — самые мощные из освоенных человечеством, но это лишь малая часть взаимодействий, которые держат кварки внутри нуклонов. И что за могучие силы их там держат — это ещё не до конца разгаданная загадка

Владимир Кекелидзе, руководитель проекта коллайдера NICA

Электрон-позитронный коллайдер ВЭПП-2000 в Новосибирске. Фото © Официальный сайт «ВЭПП-2000»

Так что главная цель всех этих встреч и столкновений — разобраться, что происходит в странном мире элементарных частиц и, возможно, похоронить господствующую стандартную модель в физике. Спокойно, сейчас разберёмся.

Что за модель и почему она не такая уж и стандартная

Кадр видео YouTube / NICA Project

Насколько понятно физикам на сегодняшний день, всё, что происходит во Вселенной, происходит под властью четырёх сил.

И все они, конечно, прекрасны, но как-то уж очень разные, и это крайне озадачивало. Хотелось найти для них какой-то единый… первоисточник, что ли, под началом которого всё взаимодействует четырьмя способами. То есть чтобы можно было сказать, что всё это — проявления одного и того же. Так вот попытка добраться до такого объяснения и есть «теория всего»! Пока что эта крепость не поддаётся. Но есть версия насчёт того, что объединяет хотя бы три из четырёх сил. Её и назвали стандартной моделью. По ней эти три дела делают разнообразные элементарные частицы. Например, нейтрино отвечают за слабое взаимодействие, электроны и их дальние родственники мюоны и тау-лептоны — за слабое и электромагнитное, а кварки ещё и за сильное, то есть за все три сразу. Но вот с гравитацией получается незадача. Да и тёмную материю вместе с тёмной энергией стандартная модель объять не может. Поэтому физики давно хотят от неё избавиться. Так что букет пионов как раз вовремя.

Источник

Понравилась статья? Поделиться с друзьями:

Читайте также:

  • Строительство администрация тульской области
  • Строительство административных офисных зданий
  • Строительство административных зданий краснодарский край
  • Строительство административных зданий во владивостоке
  • Строительство административных зданий в россии

  • Stroit.top - ваш строительный помощник
    0 0 голоса
    Article Rating
    Подписаться
    Уведомить о
    0 Комментарий
    Старые
    Новые Популярные
    Межтекстовые Отзывы
    Посмотреть все комментарии