ОСОБЕННОСТИ ПРОЕКТИРОВАНИЯ ФУНДАМЕНТОВ В УСЛОВИЯХ ВЕЧНОЙ МЕРЗЛОТЫ
АННОТАЦИЯ
Автором рассматриваются мёрзлых и многолетнемёрзлых грунтов, принципы использования их в качестве основания зданий и сооружений, конструктивные решение фундаментов, применяемых на вечномёрзлых грунтах с целью ознакомления с особенностями мёрзлых и многолетнемёрзлых грунтов, с особенностями проектирования фундаментов в условиях вечной мерзлоты, новыми типами фундаментов и др. Собрана и систематизирована информация о свойствах мёрзлых грунтов, об инженерных мероприятиях, применяемых на таких грунтах. Анализ собранных данных показал, какие типы фундаментов стоит применять в строительстве на многолетнемёрзлых грунтах в ближайшей и дальней перспективах.
ВВЕДЕНИЕ
Центральная Сибирь и Дальний Восток – территория, отличающаяся огромными запасами полезных ископаемых. Здесь присутствуют крупнейшие месторождения углеводородов, угля, золота, гелия, меди, алмазов, крупные месторождения цветных, чёрных и редких металлов, фосфоритов урана, олова, и других рудных и нерудных полезных ископаемых. Освоение этих территорий отвечает национальным интересам России. Однако, наибольшая сложность развития инфраструктуры Центральной Сибири и Дальнего Востока обуславливается не только отдалённостью этих территорий, но и инженерно-геологическими условиями. Большую часть этих территорий занимают мёрзлые и многолетнемёрзлые грунты.
Мёрзлые и многолетнемёрзлые грунты занимают обширные территории Азии, Северной Америки, Антарктиды, а также в Европе. Общая площадь распространения таких грунтов составляет 35,17 млн. км2 (23 % земной суши), из них 11 млн. км2 в Российской Федерации. В России (рис. 1) мёрзлые и многолетнемёрзлые грунты занимают в основном азиатскую часть, при этом область их распространения простирается вплоть до Северного Ледовитого океана. Они охватывают большую часть Сибири и всю Арктику. [1]
Мёрзлыми называются грунты, имеющие отрицательную или нулевую температуру и содержащие в своём составе лёд. Многолетнемёрзлыми являются мёрзлые грунты, находящиеся в таком состоянии в течении трёх и более лет. Благодаря содержанию в своей структуре льда, мёрзлые грунты являются практически несжимаемыми, однако, при оттаивании их несущая способность резко уменьшается и они дают большую просадку. Значительно изменяются и прочностные и деформационные свойства мерзлых грунтов при перемене температур в отрицательном спектре.
Особенности проектирования зданий и сооружений на вечной мерзлоте.
Особые природные и экономические условия районов распространения многолетнемёрзлых грунтов обуславливают особые требования к проектированию, возведению и эксплуатации зданий и сооружений. К таким условиям относятся: суровый климат, мёрзлое состояние грунтов и экономические особенности, связанные с удалённостью и малой освоенностью территорий.
При строительстве на многолетнемёрзлых грунтах повышаются требования к теплотехническим характеристикам ограждающих конструкций и материалов, из которых возводится здание или сооружение. Применяются особые архитектурно-планировочные решения, связанные с длительным пребыванием человека вне улицы. Высокие скорости ветра в таких условиях не только предполагают специальную защиту ограждающих конструкций зданий и сооружений, но и усиление несущих конструкций. Из-за часто повторяющихся ветров объекты заносит снегом, что нарушает транспортное сообщение, проветривание подполий зданий. В связи с этим применяются решения по защите объектов от снегозаносов. [2] Наибольшая же специфичность проектирования зданий на многолетней мерзлоте сосредоточена в вопросах проектирования фундаментов, для этого написан даже отдельный свод правил, СП 25.13330.2012
Принципы использования мёрзлых и многолетнемёрзлых грунтов в качестве основания.
При проектировании зданий и сооружений на таких грунтах используются два принципа, сформулированные Н. А. Цытовичем. [3] При принципе I грунты используются в мерзлом состоянии в течение всего периода эксплуатации зданий и сооружений. При принципе II – грунты используются в оттаявшем или оттаивающем состояниях.
Инженерные мероприятия для принципа I.
Подполья. Устройство подполья является наиболее распространённым способом регулирования теплового влияния зданий на температурный режим оснований. Оно представляет собой часть здания, заключённое между перекрытием первого этажа и грунтом основания. Непроветриваемые подполья устраиваются в районах с низкими отрицательными температурами и при незначительных
размерах здания в плане, когда основание остаётся мёрзлым за счет бокового охлаждения через грунт. Открытые подполья имеют постоянное сообщение с наружным воздухом. Однако, постоянная низкая температура в открытом подполье создаёт неблагоприятный температурный режим для помещений первого этажа здания. Чтобы снизить влияние низкой температуры на температурный режим помещений первого этажа, часто используются подполья с регулируемым проветриванием. Средством вентиляции для них служат отверстия (продухи), устраиваемые в цоколе здания.
Подсыпки. Их применение целесообразно в случаях, когда грунт основания плохо поддаётся разработке, например, на площадках с ископаемым льдом, при возможности карстовых явлений и пр. [4] В качестве материала для подсыпки хорошо подходят не сцементированные льдом пески средней крупности и крупные, а также крупнообломочные грунты (содержащие частицы размером до 0,1 мм). Высота подсыпки подбирается исходя из того, что высота протаивания под ней была не больше естественной мощности сезоннопротаивающего слоя.
Охлаждающие трубы и каналы. Охлаждающие трубы проводятся на некоторой глубине под всем зданием и объединяются коллекторами, по которым подаётся охлаждающая жидкость или газ. Искусственное охлаждение используется при значительных технологических нагрузках на полы, а также при невозможности использования проветриваемых подполий.
Фундаменты, используемые в многолетнемёрзлых грунтах.
В основном на многолетнемёрзлых грунтах применяются висячие сваи, обеспечивающие несущую способность за счет смерзания боковой поверхности с грунтом и операния острия сваи. [5] Однако, бывают случаи, когда целесообразнее всего применить другой тип фундаментов. Например, когда здание возводится на подсыпке, на площадках с неглубоким залеганием кровли разрушенных скальных пород, а также на площадках с массивами льда, применяются сборные столбчатые фундаменты. Ленточные фундаменты применяют в том случае, когда их подошвы проектируются в пределах насыпи из непучинистых грунтов.
Устройство столбчатых и ленточных фундаментов предполагает большой объём земляных работ, поэтому наиболее рациональных в условиях многолетней мерзлоты является устройство свайных фундаментов.
На многолетнемёрзлых грунтах в большинстве случаев применяются буроопускные сваи с гладкой боковой поверхностью. В предварительно пробуренную на определённую глубину скважину опускают сваю, а пространство между сваей и стенками скважины заполняют грунтовым раствором и выдерживают до смерзания с окружающими грунтами. Нагрузка от сооружения передается на грунты основания через нижний конец сваи и боковую ее поверхность.
Серьёзным недостатком буроопускных свай с гладкой боковой поверхностью является их малая надёжность в условиях веч-ной мерзлоты за счёт снижения несущей способности со временем. Не последней проблемой в зоне распространения многолетнемёрзлых грунтов является глобальное потепление.Появилась необходимость появления новых типов свай, позволяющих использовать несущую способность оснований более эффективно. [6]
Несмотря на положительные стороны винтовых свай, таких, как их высокая технологичность и дешевизна, существует ряд серьёзных недостатков. Бурение скважин под такие сваи не прощает ошибок, так как возможно существенное снижение несущей способности основания по боковой поверхности сваи.
Ребристые сваи. Анализ литературы показал, что необходимо стремиться к созданию буроопускных свай с неровной боковой поверхностью, так как именно эта конфигурация позволяет существенно увеличить несущую способность грунтов основания. С этой целью Набережным А. Д. была разработана методика по расчёту таких свай. Они представляют собой сваи с ребристой боковой поверхностью. Грунт под рёбрами таких свай работает на сжатие, что намного эффективнее, чем работа грунта на сдвиг по поверхности смерзания с материалом обычной буроопускной сваи.
При использовании ребристых свай на их ребрах образуется тонкий слой льда. В ребристых сваях нагрузка передается нижними гранями ребер и грунт или грунтовый раствор работает преимущественно на сжатие, вследствие чего наличие льда не будет значительно снижать несущую способность основания. Экспериментальным путём было установлено, что, чем меньше шаг рёбер, тем выше несущая способность. [7]
Ребристые сваи наиболее эффективны в условиях вечной мерзлоты ввиду того, что площадь смерзания поверхности сваи с грунтом больше, вследствие чего повышается несущая способность основания. Использование ребристых свай экономически более выгодно, чем использование буроопускных свай с гладкой поверхностью.
Ремонтные работы повреждённых зданий и сооружений требуют больших затрат. Поэтому, гораздо более целесообразно внедрение в строительное производство нового типа свай. По данным технико- экономического сравнения буроопускных свай с гладкой боковой поверхностью и свай с ребристой боковой поверхностью, экономический эффект при внедрении данного типа свай составит порядка 2 млрд. руб/год.
Строительство в вечной мерзлоте снип
Дата введения 2013-01-01
Предисловие
2 ВНЕСЕН Техническим комитетом по стандартизации (ТК 465) «Строительство»
3 ПОДГОТОВЛЕН к утверждению Департаментом архитектуры, строительства и градостроительной политики
Изменения N 1, 2, 3, 4 внесены изготовителем базы данных по тексту М.: Стандартинформ, 2019
Введение
1 Область применения
Настоящий свод правил распространяется на проектирование оснований и фундаментов зданий и сооружений, возводимых на территории распространения вечномерзлых (многолетнемерзлых) грунтов.
Настоящий свод правил, кроме 4.1-5.7, не распространяется на проектирование оснований гидротехнических сооружений, земляного полотна автомобильных и железных дорог, аэродромных покрытий и фундаментов машин с динамическими нагрузками.
2 Нормативные ссылки
В настоящем своде правил приведены нормативные ссылки на следующие документы:
ГОСТ 5686-2012 Грунты. Методы полевых испытаний сваями
ГОСТ 6727-80 Проволока из низкоуглеродистой стали холоднотянутая для армирования железобетонных конструкций. Технические условия
ГОСТ 8732-78 Трубы стальные бесшовные горячедеформированные. Сортамент
ГОСТ 8734-75 Трубы стальные бесшовные холоднодеформированные. Сортамент
ГОСТ 10704-91 Трубы стальные электросварные прямошовные. Сортамент
ГОСТ 12248-2010 Грунты. Методы лабораторного определения характеристик прочности и деформируемости
ГОСТ 13015-2012 Изделия бетонные и железобетонные для строительства. Общие технические требования. Правила приемки, маркировки, транспортирования и хранения
ГОСТ 19912-2012 Грунты. Методы полевых испытаний статическим и динамическим зондированием
ГОСТ 20276-2012 Грунты. Методы полевого определения характеристик прочности и деформируемости
ГОСТ 20295-85 Трубы стальные сварные для магистральных газонефтепроводов. Технические условия
ГОСТ 20522-2012 Грунты. Методы статистической обработки результатов испытаний
ГОСТ 24846-2012 Грунты. Методы измерения деформаций оснований зданий и сооружений
ГОСТ 24847-2017 Грунты. Методы определения глубины сезонного промерзания
ГОСТ 25358-2012 Грунты. Метод полевого определения температуры
ГОСТ 26262-2014 Грунты. Методы полевого определения глубины сезонного оттаивания
ГОСТ 27217-2012 Грунты. Метод полевого определения удельных касательных сил морозного пучения
ГОСТ 27751-2014 Надежность строительных конструкций и оснований. Основные положения
ГОСТ 27772-2015 Прокат для строительных стальных конструкций. Общие технические условия
ГОСТ 28622-2012 Грунты. Метод лабораторного определения степени пучинистости
ГОСТ 30416-2012 Грунты. Лабораторные испытания. Общие положения
ГОСТ 30672-2012 Грунты. Полевые испытания. Общие положения
ГОСТ 34028-2016 Прокат арматурный для железобетонных конструкций. Технические условия
ГОСТ Р 52544-2006 Прокат арматурный свариваемый периодического профиля классов А500С и В500С для армирования железобетонных конструкций. Технические условия
ГОСТ Р 53582-2009 Грунты. Метод определения сопротивления сдвигу оттаивающих грунтов
ГОСТ Р 56726-2015 Грунты. Метод лабораторного определения удельной касательной силы морозного пучения
СП 14.13330.2018 «СНиП II-7-81* Строительство в сейсмических районах»
СП 28.13330.2017 «СНиП 2.03.11-85 Защита строительных конструкций от коррозии» (с изменением N 1)
СП 47.13330.2016 «СНиП 11-02-96 Инженерные изыскания для строительства. Основные положения»
СП 63.13330.2018 «СНиП 52-01-2003 Бетонные и железобетонные конструкции. Основные положения»
СП 116.13330.2012 «СНиП 22-02-2003 Инженерная защита территорий, зданий и сооружений от опасных геологических процессов. Основные положения»
СП 131.13330.2018 «СНиП 23-01-99* Строительная климатология»
3 Термины и определения
Определения основных терминов приведены в приложении А.
4 Общие положения
4.1 Основания и фундаменты зданий и сооружений*, возводимых на территории распространения многолетнемерзлых грунтов, следует проектировать на основе результатов специальных инженерно-геологических изысканий, включающих специальные геокриологические и гидрогеологические изыскания с учетом конструктивных и технологических особенностей проектируемых сооружений, их теплового и механического взаимодействия с многолетнемерзлыми грунтами оснований и возможных изменений геокриологических условий в результате строительства и эксплуатации сооружений и освоения территории, устанавливаемых по данным инженерных изысканий и теплотехнических расчетов оснований.
_______________
* Далее вместо термина «здания и сооружения» используется термин «сооружения», в число которых входят также подземные сооружения.
4.2 Исходные данные для проектирования должны предоставляться в необходимом и достаточном объеме, регистрироваться и интерпретироваться специалистами, обладающими соответствующей квалификацией и опытом.
Проектирование должно выполняться квалифицированным персоналом, имеющим соответствующий опыт проектирования и строительства на многолетнемерзлых грунтах. При этом должны быть обеспечены координация и связь между ними и специалистами по инженерным изысканиям.
Используемые материалы и изделия должны удовлетворять требованиям северной строительно-климатической зоны.
При проектировании оснований и фундаментов на многолетнемерзлых грунтах следует учитывать местные условия строительства, требования к охране окружающей среды, а также имеющийся опыт проектирования, строительства и эксплуатации сооружений в аналогичных условиях.
Выбор строительных площадок и проектных решений оснований и фундаментов следует производить на основании технико-экономического сравнения возможных вариантов с оценкой их по приведенным затратам с учетом надежности.
Не допускается использование восстановленных стальных труб и других бывших в употреблении видов металлоконструкции при проектировании и строительстве зданий и сооружений с нормальным и повышенным уровнем ответственности, а также при строительстве и эксплуатации особо опасных, технически сложных и уникальных объектов.
Техническое обслуживание сооружения при эксплуатации и связанных с ним инженерных систем должно строго выполняться и обеспечивать его безопасность и рабочее состояние на весь срок эксплуатации.
(Измененная редакция, Изм. N 1).
4.4 При возведении нового объекта или реконструкции существующего сооружения на застроенной территории необходимо учитывать его воздействие на окружающую застройку с целью сохранения расчетного температурного режима многолетнемерзлых грунтов прилегающих территорий и предотвращения недопустимых деформаций существующих сооружений.
4.5 Соответствие состояния грунтов основания и фундаментов проектным требованиям при сдаче сооружения в эксплуатацию должно быть подтверждено результатами натурных наблюдений или испытаний, выполненных в период строительства согласно проекту геотехнического мониторинга.
(Измененная редакция, Изм. N 1, 3).
4.6 При проектировании оснований и фундаментов уникальных зданий и сооружений или их реконструкции, а также сооружений повышенного уровня ответственности, в том числе реконструируемых в условиях окружающей застройки, необходимо предусматривать научно-техническое сопровождение строительства.
Научно-техническое сопровождение представляет собой комплекс работ научно-аналитического, методического, информационного, экспертно-контрольного и организационного характера, осуществляемых в процессе изысканий, проектирования и строительства в целях обеспечения надежности сооружений с учетом применения нестандартных расчетных методов, конструктивных и технологических решений.
(Измененная редакция, Изм. N 1).
4.7 Состав работ по научно-техническому сопровождению инженерных изысканий, проектирования и строительства оснований и фундаментов должен определяться проектировщиком и согласовываться заказчиком строительства. В состав работ научно-технического сопровождения могут быть включены:
— разработка рекомендаций к программе инженерно-геологических и инженерно-экологических изысканий;
— оценка и анализ материалов инженерных изысканий;
— разработка нестандартных методов расчета и анализа;
— прогноз состояния оснований и фундаментов проектируемого объекта с учетом всех возможных видов воздействий;
— прогноз влияния строительства на окружающую застройку, геологическую среду и экологическую обстановку;
— оценка геокриологических рисков;
— разработка рекомендаций к проекту геотехнического мониторинга;
— разработка технологических регламентов на специальные виды работ;
— выполнение научно-исследовательских и опытно-конструкторских работ;
— обобщение и анализ результатов всех видов геотехнического мониторинга, их сопоставление с результатами прогноза;
— оперативная разработка рекомендаций для корректировки проектных решений на основании данных геотехнического мониторинга при выявлении отклонений от результатов прогноза.
(Измененная редакция, Изм. N 3).
5 Характеристики многолетнемерзлых грунтов оснований
5.1 Подразделение и наименование разновидностей многолетнемерзлых грунтов следует производить в соответствии с ГОСТ 25100 с учетом особенностей их физико-механических свойств как оснований сооружений.
5.2 По особенностям физико-механических свойств среди многолетнемерзлых грунтов должны выделяться сильнольдистые, засоленные и заторфованные грунты, использование которых в качестве оснований сооружений регламентируется дополнительными требованиями, предусмотренными разделами 8, 9 и 10, а также твердомерзлые, пластично-мерзлые и сыпучемерзлые грунты, выделяемые согласно 5.3.
5.4 Необходимые для расчета оснований и фундаментов физические и деформационно-прочностные характеристики многолетнемерзлых грунтов надлежит определять на основании их непосредственных полевых или лабораторных испытаний.
5.5 В состав определяемых для расчета многолетнемерзлых оснований физических и механических характеристик грунтов помимо характеристик, предусмотренных СП 22.13330 должны дополнительно входить:
а) физические и теплофизические характеристики мерзлых грунтов, определяемые в соответствии с приложением Б;
в) деформационные характеристики грунтов для расчета оттаивающего основания по деформациям: коэффициенты оттаивания и сжимаемости при оттаивании грунта (7.3.8);
5.6 Нормативные значения характеристик грунта следует устанавливать для выделенных при изысканиях инженерно-геологических элементов на основании статистической обработки результатов экспериментальных определений с учетом предусмотренного проектом состояния и температуры грунтов основания.
(Измененная редакция, Изм. N 1).
5.7 Расчетные значения характеристик грунта определяются по формуле
6 Основные положения проектирования оснований и фундаментов
6.1 Принципы использования многолетнемерзлых грунтов в качестве основания
6.1.2 Принцип I следует применять, если грунты основания можно сохранить в мерзлом состоянии при экономически целесообразных затратах на мероприятия, обеспечивающие сохранение такого состояния. На участках с твердомерзлыми грунтами, а также при повышенной сейсмичности района следует принимать использование многолетнемерзлых грунтов по принципу I.
При строительстве на пластично-мерзлых грунтах следует предусматривать мероприятия по понижению температуры грунтов (6.3.1-6.3.4) до установленных расчетом значений, а также учитывать в расчетах оснований пластические деформации этих грунтов под нагрузкой согласно указаниям 7.2.15-7.2.17.
(Измененная редакция, Изм. N 1).
6.1.3 Принцип II следует применять при наличии в основании скальных или других малосжимаемых грунтов, деформация которых при оттаивании не превышают предельно допустимых значений для проектируемого сооружения, при несплошном распространении многолетнемерзлых грунтов, а также в тех случаях, когда по техническим и конструктивным особенностям сооружения и инженерно-геокриологическим условиям участка при сохранении мерзлого состояния грунтов основания не обеспечивается требуемый уровень надежности строительства.
6.1.4 Выбор принципа использования многолетнемерзлых грунтов в качестве основания сооружений, а также способов и средств, необходимых для обеспечения принятого в проекте температурного режима грунтов, следует производить на основании сравнительных технико-экономических расчетов.
6.1.6 Линейные сооружения допускается проектировать с применением на отдельных участках трассы разных принципов использования многолетнемерзлых грунтов в качестве основания. При этом следует предусматривать меры по приспособлению их конструкций к неравномерным деформациям основания в местах перехода от одного участка к другому, а при прокладке их в пределах застраиваемой территории следует соблюдать требования, предусмотренные 6.1.5.
6.2 Глубина заложения фундаментов
6.2.1 Глубина заложения фундаментов, считая от уровня планировки (подсыпки или срезки), назначается с учетом требований СП 22.13330 и принятого принципа использования многолетнемерзлых грунтов в качестве основания сооружения и должна проверяться расчетом по устойчивости фундаментов на действие сил морозного пучения грунтов согласно указаниям 7.4.2 и 7.4.6.
Фундаменты всех типов, кроме свайных
Свайные фундаменты зданий и сооружений
Фундаменты зданий и сооружений, возводимых на подсыпках
6.3 Устройство оснований и фундаментов при использовании многолетнемерзлых грунтов по принципу I
6.3.3 Вентилируемые трубы или каналы, а также вентилируемые фундаменты можно устраивать с естественной или побудительной вентиляцией и их следует применять для сохранения мерзлого состояния грунтов в основании сооружений с полами по грунту, при устройстве свайных фундаментов, малозаглубленных или поверхностных фундаментов на подсыпках, а также мобильных зданий и зданий в комплектно-блочном исполнении.
Вентилируемые трубы, каналы и вентилируемые фундаменты следует укладывать выше уровня подземных вод в пределах подсыпки из непучинистого грунта с уклонами в сторону объединительных коллекторов. Для уменьшения теплопритока в грунт и высоты подсыпки под полами сооружения следует предусматривать укладку тепло- и гидроизоляции.
Теплотехнический расчет оснований при использовании указанных систем охлаждения грунтов следует производить согласно указаниям 7.2.9.
(Измененная редакция, Изм. N 1, 4).
6.3.4 Сезоннодействующие охлаждающие устройства следует применять для сохранения мерзлого состояния грунтов оснований, для повышения несущей способности опор линейных сооружений в пластично-мерзлых грунтах, а также для создания ледогрунтовых завес, восстановления нарушенного при эксплуатации сооружения теплового режима грунтов в его основании и в других целях.
6.3.5 Для сокращения сроков строительства и повышения расчетных нагрузок на фундаменты следует предусматривать предварительное (до возведения сооружения) охлаждение высокотемпературных и пластично-мерзлых грунтов (путем очистки поверхности от снега, с помощью СОУ и т.д.) при последующем поддержании расчетного температурного режима грунтов за счет постоянно действующих охлаждающих устройств.
6.3.6 На участках, где слой сезонного промерзания-оттаивания не сливается с многолетнемерзлым грунтом, необходимо предусматривать меры по стабилизации или поднятию верхней поверхности многолетнемерзлого грунта до расчетного уровня путем предварительного охлаждения и промораживания грунтов основания. Глубину заложения фундаментов при этом следует определять расчетом, но принимать не менее 2 м от верхней поверхности многолетнемерзлого грунта. Допускается закладывать фундаменты в пределах немерзлого слоя грунта, если это обосновано расчетом основания.
6.3.7 При использовании многолетнемерзлых грунтов в качестве оснований по принципу I могут применяться свайные, столбчатые и другие типы фундаментов, в том числе фундаменты на искусственных (насыпных и намывных) основаниях. Выбор типа фундамента и способа устройства основания устанавливается проектом в зависимости от инженерно-геокриологических условий строительства, конструктивных особенностей сооружения и технико-экономической целесообразности.
Условия работы конструкции
Минималь-
ный класс бетона по прочности на сжатие B
Минимальные марки бетона
Мини-
мальное воздухо-
вовлечение, %
Характеристика режима работы
Расчетная зимняя темпе-
ратура наружного воздуха
по морозо-
стой-
кости F
по водоне-
проница-
емости W
Железобетонные конструкции, расположенные в сезонно-оттаивающем слое грунта и подвергающиеся попеременному замораживанию и оттаиванию в водонасыщенном состоянии
Ниже минус 0°С до минус 40°С включ.
Наземные железобетонные конструкции, подвергающиеся воздействию атмосферных осадков и попеременному замораживанию и оттаиванию
Ниже минус 20°С до минус 40°С включ.
Железобетонные конструкции, защищенные от атмосферных осадков и подвергающиеся замораживанию и оттаиванию
Ниже минус 20°С до минус 40°С включ.
Примечания
1 Расчетная зимняя температура наружного воздуха принимается по средней температуре воздуха наиболее холодной пятидневки в зависимости от района строительства согласно СП 131.13330.
2 Марки по морозостойкости и водонепроницаемости для конструкций водоснабжения и канализации, а также для свай и свай-оболочек следует устанавливать согласно требованиям соответствующих нормативных документов.
3 В случае присутствия хлоридов в надмерзлотных водах для обеспечения защиты стальной арматуры от коррозии марку бетона по водонепроницаемости и толщину защитного слоя бетона устанавливают по таблице Г.1 СП 28.13330.
4 При проектировании сооружений с полами по грунту для железобетонных конструкций фундаментов группы 1 следует применять бетон, отвечающий требованиям по прочности, морозостойкости и водонепроницаемости, указанным в строке для температур наружного воздуха ниже 0°С до минус 40°С включительно.
В условиях холодного климата следует применять следующую стальную арматуру:
— горячекатаную гладкую класса А-I(А240) по ГОСТ 34028;
— горячекатаную кольцевого периодического профиля классов А-II(А300), А-III(А400) по ГОСТ 34028;
— термомеханически упрочненную серповидного профиля классов А500С по ГОСТ Р 52544;
— термомеханически упрочненную и горячекатаную серповидного профиля класса А500С по ГОСТ Р 52544;
— холоднодеформированную волочением с последующей накаткой периодического профиля класса Вр-1 по ГОСТ 6727;
— холоднодеформированную прокаткой периодического профиля класса В500С по ГОСТ Р 52544.
Преимущественно рекомендуется применять арматуру с гарантией ударной вязкости северного исполнения горячекатаную класса Ас-II(Ас300) по ГОСТ 34028 и термомеханически упрочненную класса Ас500С по ГОСТ 13015.
При низкой температуре до минус 60°С увеличивается предел текучести арматуры в среднем на 8%-10% и модуль упругости арматуры на 2%-3%, но эти данные допускается не учитывать в расчете железобетонных конструкций, и расчетные сопротивления и модуль упругости принимают по [5].
(Измененная редакция, Изм. N 1, 2, 3, 4).
6.3.9 Ленточные и столбчатые фундаменты должны быть выполнены из монолитного или сборного железобетона. Для зданий, строящихся с использованием оснований фундаментов по принципу I, предпочтительно использовать сборные элементы фундамента.
Ленточные и столбчатые фундаменты под малоэтажные здания допускается не заглублять в грунт, а располагать на подсыпке или в теле подсыпки. Подсыпка выполняется из крупноскелетного непучинистого материала. Для определения глубины оттаивания следует проводить теплотехнический расчет и расчет по второй группе предельных состояний и, при необходимости, применить слой теплоизоляции под сооружением в теле подсыпки.
При устройстве свайных фундаментов в многолетнемерзлых грунтах допускается применять виды и конструкции свай, предусмотренные СП 24.13330, в том числе буронабивные, сваи-оболочки, а также составные (комбинированные) сваи из разных материалов.
(Измененная редакция, Изм. N 1, 2).
6.3.11 По условиям применимости и способам погружения в многолетнемерзлый грунт сваи подразделяются на:
6.3.13 Столбчатые или плитные фундаменты, возводимые на естественном многолетнемерзлом основании, следует устраивать сборно-монолитными и монолитными. Глубина заложения фундаментов, их размеры и несущая способность устанавливаются расчетом согласно указаниям 7.2.2-7.2.4, с учетом требований 6.2.1 и 6.2.2.
Обратную засыпку котлованов под фундаменты следует производить талым (непучинистым при промерзании) грунтом. При льдистости грунтов основания 0,2 под подошвой фундаментов следует устраивать песчаную подушку толщиной не менее 0,2 м.
(Измененная редакция, Изм. N 1).
6.3.14 При проектировании сооружений на искусственных основаниях (насыпях или подсыпках) следует предусматривать устройство фундаментов мелкого заложения (столбчатые, ленточные, плитные, с вентилируемыми каналами и др.). Фундаменты следует закладывать в пределах высоты подсыпки, определяемой теплотехническим расчетом с учетом дополнительных мероприятий по сохранению мерзлого состояния грунтов оснований, предусмотренных 6.3.3 и 6.3.13.
Подсыпку следует устраивать из непучинистого песчаного или крупнообломочного грунта, укладываемого после промерзания сезоннооттаивающего слоя; допускается для устройства подсыпок применять шлаки или другие отходы производства, если их осадки под нагрузками от сооружений не больше расчетных, и если они не подвержены морозному пучению и разрушению, растворению и размоканию.
При устройстве фундаментов на подсыпках основания и фундаменты следует рассчитывать по несущей способности и деформациям в соответствии с требованиями СП 22.13330 и с учетом результатов прогнозных теплотехнических расчетов.
6.4 Устройство оснований и фундаментов при использовании многолетнемерзлых грунтов по принципу II
6.4.2 Для уменьшения деформаций основания в зависимости от конкретных условий строительства следует предусматривать:
предварительное (до возведения сооружения) искусственное оттаивание и уплотнение грунтов основания;
замену льдистых грунтов основания талым или непросадочным при оттаивании песчаным или крупнообломочным грунтом;
ограничение глубины оттаивания мерзлых грунтов основания, в том числе со стабилизацией верхней поверхности многолетнемерзлого грунта в процессе эксплуатации сооружения;
увеличение глубины заложения фундаментов, в том числе с прорезкой льдистых грунтов и опиранием фундаментов на скальные или другие малосжимаемые при оттаивании грунты.
6.4.3 Глубину предварительного оттаивания или замены льдистых грунтов основания на малосжимаемые при оттаивании грунты следует устанавливать по результатам расчета основания по деформациям согласно указаниям 7.3.10.
Контуры зоны оттаивания или замены грунтов основания в плане должны выходить за контуры сооружения не менее чем на половину глубины предварительного оттаивания грунта.
Допускается принимать меньшую площадь предварительного оттаивания или замены грунтов в плане, а также производить локальное предварительное оттаивание грунтов под фундаментами (вместо сплошного оттаивания под всей площадью сооружения), если это обосновано расчетом основания по деформациям и устойчивости.
Оттаивание грунтов оснований можно производить способами электрооттаивания, парооттаивания или за счет других источников тепла. При этом должны быть предусмотрены меры по обеспечению установленной проектом степени уплотнения оттаянного грунта.
6.4.4 Для ограничения глубины оттаивания грунтов в основании сооружения следует предусматривать устройство теплоизолирующих подсыпок и экранов, увеличение сопротивления теплопередаче полов первых этажей и другие мероприятия по уменьшению теплового влияния сооружения на грунты основания, а также стабилизацию верхней поверхности многолетнемерзлого грунта (в том числе при несливающемся сезоннопромерзающем слое) ниже глубины заложения подошвы фундаментов путем регулирования температуры воздуха в подпольях или технических этажах здания согласно приложению Е.
6.4.5 Приспособление конструкций сооружений к неравномерным деформациям основания должно обеспечиваться:
а) увеличением прочности и пространственной жесткости здания, достигаемой устройством поэтажных, связанных с перекрытиями железобетонных и армокирпичных поясов, усилением армирования конструкций, замоноличиванием сборных элементов перекрытия, усилением цокольно-фундаментной части, равномерным расположением сквозных поперечных стен, а также разрезкой протяженных зданий на отдельные отсеки длиной до полуторной ширины здания;
б) увеличением податливости и гибкости сооружения путем разрезки его конструкций деформационными швами, устройством шарнирных сопряжений отдельных конструкций с учетом возможности их выравнивания и рихтовки технологического оборудования.
Допускается предусматривать комбинацию указанных мероприятий применительно к особенностям проектируемого сооружения. При этом, бескаркасные жилые и общественные здания следует, как правило, проектировать по жесткой конструктивной схеме; для промышленных сооружений могут применяться гибкие и комбинированные конструктивные схемы. Цокольно-фундаментную часть зданий в типовых проектах следует разрабатывать в нескольких вариантах, рассчитанных по прочности на разные пределы допустимых деформаций основания.
6.4.6 При использовании многолетнемерзлых грунтов в качестве оснований по принципу II следует, как правило, применять:
6.4.7 В случаях, когда в основании сооружений залегают скальные или другие малосжимаемые при оттаивании грунты, следует применять столбчатые фундаменты, свайные фундаменты из свай-стоек, в том числе из составных и буронабивных свай.
Сваи следует погружать, как правило, буроопускным способом в скважины, диаметр которых не менее чем на 15 см превышает наибольшие размеры поперечного сечения сваи, с заполнением свободного пространства цементно-песчаным или другим раствором по проекту. Заделку свай-стоек в скальные грунты надлежит производить в соответствии с требованиями СП 24.13330.
6.5 Требования к инженерной подготовке территории
6.5.1 В проекте оснований и фундаментов на многолетнемерзлых грунтах должны быть предусмотрены мероприятия по инженерной подготовке территории, обеспечивающие соблюдение расчетного гидрогеологического и теплового режима грунтов основания и предотвращение эрозии, развития термокарста и других физико-геологических процессов, приводящих к изменению проектного состояния грунтов в основании сооружений при их строительстве и эксплуатации, а также к недопустимым нарушениям природных условий окружающей среды. Разработку мероприятий надлежит проводить в соответствии с требованиями СП 116.13330. Требования к инженерно-экологическим изысканиям для строительства установлены в [1].
6.5.2 Инженерная подготовка отдельных строительных площадок должна быть увязана с общей инженерной подготовкой и вертикальной планировкой территории застройки в соответствии с генпланом и обеспечивать организованный отвод поверхностных, надмерзлотных и межмерзлотных вод и вод сезоннооттаивающего слоя с начала строительства и в течение эксплуатационного периода.
Подъездные пути и насыпи для прохождения транспортных средств и работы строительной техники следует устраивать до начала работ по возведению фундаментов.
6.5.3 На территории с многолетнемерзлыми грунтами вертикальную планировку местности следует производить, как правило, подсыпкой. При применении в необходимых случаях срезок и выемок грунта должны быть приняты меры по защите вскрытых льдистых грунтов от протаивания, размыва и оползания склонов. Подсыпку можно выполнять сплошной по всей застраиваемой территории или под отдельные сооружения или их группы при условии обеспечения свободного стока поверхностных вод.
6.5.4 При использовании многолетнемерзлых грунтов по принципу I подсыпку следует выполнять, как правило, в зимний период после промерзания сезоннооттаявшего слоя грунта (не менее чем на 0,2 м), после предварительной очистки поверхности грунта от снега. Толщина и способ устройства подсыпок принимаются в зависимости от их назначения мерзлотно-грунтовых и гидрогеологических условий.
На участках с сильнольдистыми грунтами и подземными льдами следует устраивать сплошные по площади теплоизолирующие подсыпки или экраны, толщину которых необходимо устанавливать расчетом по условию предотвращения протаивания подстилающего льдистого грунта согласно указаниям 8.2 и исключения повышения природных температур многолетнемерзлых грунтов. Устройство подсыпок, используемых в качестве оснований сооружений, следует производить согласно указаниям 6.3.14.
При необходимости понижения природных температур сильнольдистых грунтов и подземных льдов в целях исключения процессов ползучести (приложение И) во время эксплуатационного периода, следует предусматривать активную термостабилизацию грунтов основания с помощью установки СОУ.
6.5.5 При использовании многолетнемерзлых грунтов в качестве оснований по принципу II вертикальную планировку допускается осуществлять подсыпками и выемками грунта. Подсыпки надлежит устраивать, как правило, по оттаянному грунту слоя сезонного промерзания-оттаивания. Выемки грунтов допускается выполнять на непросадочных при оттаивании грунтах или если предусмотрено предпостроечное оттаивание и уплотнение грунтов под сооружениями.
Уровень планировочных отметок, высоту подсыпок, глубины выемок грунтов, уклоны водоотводящей сети следует принимать с учетом расчетных осадок грунтов при оттаивании. В необходимых случаях (сильнольдистые, заторфованные или имеющие неравномерную льдистость грунты) следует осуществлять частичное оттаивание или замену грунтов верхнего льдистого слоя или устройство теплозащитных экранов согласно 6.4.4.
При высоком уровне подземных вод необходимо предусматривать меры по предотвращению обводнения заглубленных подвалов или технических этажей здания: поднятие уровня планировочных отметок, устройство дренажа, противофильтрационные завесы, в том числе льдогрунтовые и т.п. При проектировании противофильтрационных завес водный баланс подземных вод на застраиваемой территории должен быть сохранен.
6.5.6 В составе мероприятий по инженерной подготовке территории должны быть предусмотрены природоохранные мероприятия, направленные на восстановление нарушенных в процессе строительства природных условий, в соответствии с 16.4.
7 Расчет оснований и фундаментов
7.1 Общие указания
7.1.1 При проектировании оснований и фундаментов сооружений, возводимых на многолетнемерзлых грунтах, следует выполнять теплотехнические расчеты основания и расчеты основания и фундаментов на силовые воздействия. В расчетах основания и фундаментов надлежит учитывать принцип использования многолетнемерзлых грунтов в качестве основания, тепловое и механическое взаимодействие сооружения и основания.
7.1.3 Расчет оснований следует производить:
7.2 Расчет оснований и фундаментов при использовании многолетнемерзлых грунтов по принципу I
7.2.1 Расчет оснований фундаментов по первой группе предельных состояний (по несущей способности) производится исходя из условия
1 При расчете несущей способности основания столбчатого фундамента силы смерзания грунта, определяемые вторым слагаемым формулы (7.2), учитываются только при условии выполнения обратной засыпки пазух котлована влажным талым грунтом с уплотнением, что должно быть отмечено в проекте.
3 Рекомендуется при определении несущей способности оснований выполнять расчет на первый год эксплуатации. Распределение температур грунта по глубине рассчитывается по формуле (7.8), при этом температурный коэффициент принимается равным 1. В случае, когда несущая способность основания на первый год эксплуатации меньше несущей способности, определенной по расчетным значениям температуры, установившимся в эксплуатационном периоде, и с учетом температурного коэффициента, за несущую способность следует принимать данное значение.
4 При расчете несущей способности основания свайного фундамента следует учитывать возможное возникновение отрицательного (негативного) трения грунта на боковой поверхности свай с учетом требований СП 24.13330.
(Измененная редакция, Изм. N 1, 2, 3).
